Antioxidative Vitamine zur Prävention kardiovaskulärer Erkrankungen nach Nierentransplantation und bei chronischer Niereninsuffizienz

Petra Schnell-Inderst, Beate Kossmann, Michael Fischereder, Volker Klauss, Jürgen Wasem
Antioxidative Vitamine zur Prävention kardiovaskulärer Erkrankungen nach Nierentransplantation und bei chronischer Niereninsuffizienz

Petra Schnell-Inderst, Beate Kossmann, Michael Fischereder, Volker Klauss, Jürgen Wasem
Der vorliegende Bericht hat ein unabhängiges Gutachterverfahren durchlaufen.

Die Basis der Finanzierung des Gesamtberichts bildet der gesetzliche Auftrag nach Artikel 19 des GKV-Gesundheitsreformgesetzes 2000 und erfolgte durch die Deutsche Agentur für Health Technology Assessment des Deutschen Instituts für Medizinische Dokumentation und Information (DAHTA@DIMDI) im Auftrag des Bundesministeriums für Gesundheit.

Herausgeber:
Deutsches Institut für Medizinische Dokumentation und Information (DIMDI)

Dr. Alric Rüther
Dr. Britta Göhlen

Deutsches Institut für Medizinische Dokumentation und Information (DIMDI)
Waisenhausgasse 36-38a
50676 Köln
Tel.: +49 221 4724-1
Fax: +49 221 4724-444
dahta@dimdi.de
www.dimdi.de

Schriftenreihe Health Technology Assessment, Bd. 40
ISSN: 1864-9645
1. Auflage 2006

Antioxidative Vitamine zur Prävention kardiovaskulärer Erkrankungen nach Nierentransplantation und bei chronischer Niereninsuffizienz

4.1 Oxidative Spezies .. 14
4.1.1 Oxidativer Stress und sein Effekt ... 15
4.1.1.2 Oxidativer Stress bei Niereninsuffizienten ... 15
4.1.1.3 Marker ... 16
4.1.1.4 Oxidierte Lipide, Proteine und oxidativ geschädigte DNA als Marker 16
4.1.1.5 Enzymatischer Antioxidantien als Marker ... 16
4.1.1.6 Nichteozymatische Antioxidantien als Marker ... 17
4.1.2 Beschreibung der Technologie .. 17
4.1.2.1 Vitamine als Antioxidantien ... 17
4.1.2.2 Epidemiologische Studien zur Wirkung antioxidativer Vitamine auf kardiovaskuläre Erkrankungen ... 18
4.1.3 Methodik .. 20
4.1.3.1 Studienpopulation, verglichene Technologien, Zielgrößen und Studientypen 20
4.1.3.1.1 Studienpopulation ... 20
4.1.3.1.2 Verglichene Technologien .. 20
4.1.3.1.3 Zielgrößen .. 21
4.1.3.1.4 Studientypen .. 21
4.1.3.1.5 Studiendesign .. 28
4.1.3.1.6 Patientencharakteristika .. 32
4.1.3.1.7 Studienqualität .. 36
4.1.3.2 Studiencharakteristika ... 45
4.1.3.2.1 Studien zur oralen Supplementation und Infusion mit antioxidativen Vitaminen ... 26
4.1.3.2.1.1 Studiencharakteristika .. 26
4.1.3.2.1.2 Allgemeine Angaben ... 26
4.1.3.2.1.3 Studiendesign .. 28
4.1.3.2.1.4 Intervention .. 28
4.1.3.2.1.5 Begleitmedikation ... 32
4.1.3.2.1.6 Patientencharakteristika .. 32
4.1.3.2.1.7 Studienqualität .. 36
4.1.3.2.1.8 Auswahl der Studienteilnehmer .. 36
4.1.3.2.1.9 Zuordnung und Studienteilnahme .. 36
4.1.3.2.1.10 Intervention und Studienadministration ... 37
4.1.3.2.1.11 Outcomemessung ... 37
4.1.3.2.1.12 Dropouts .. 38
4.1.3.2.1.13 Statistische Analyse .. 38
4.1.3.2.1.14 Ergebnisse zum Einfluss von antioxidativen Vitaminen auf klinische Zielgrößen 39
4.1.3.2.1.15 Ergebnisse zum Einfluss von antioxidativen Vitaminen auf intermediäre Zielgrößen 40
4.1.3.2.1.16 Ergebnisse zum Einfluss von antioxidativen Vitaminen auf gefäßverändernde Zielgrößen ... 40
4.1.3.2.2 Studien zur Supplementation mit antioxidativen Vitaminen durch Vitamin E- beschichtete Hämodialysemembranen ... 44
4.1.3.2.2.1 Studiencharakteristika .. 45
4.1.3.2.2.1.1 Studiencharakteristika ... 45
4.1.3.2.2.1.2 Allgemeine Angaben .. 46
Antioxidative Vitamine zur Prävention kardiovaskulärer Erkrankungen nach Nierentransplantation und bei chronischer Niereninsuffizienz

4.3.2.1.3 Studiendesign... 46
4.3.2.2.4 Intervention... 49
4.3.2.2.2.3 Intervention und Studienadministration............................... 60
4.3.2.2.3 Ergebnisse der Studien zum Einfluss von Vitamin E-beschichteten Membranen auf klinische Zielgrößen... 60
4.3.2.2.4 Ergebnisse der Studien zum Einfluss von Vitamin E-beschichteten Membranen auf intermediäre Zielgrößen... 60
4.3.2.2.5 Ergebnisse der Studien zum Einfluss von Vitamin E-beschichteten Membranen auf gefäßverändernde Zielgrößen... 60
4.3.2.2.6 Ergebnisse der Studien zum Einfluss von Vitamin E-beschichteter Membran auf Marker für oxidativen Stress... 62
4.3.3 Diskussion ... 68
4.3.3.1 Diskussion der Methodik... 68
4.3.3.2 Diskussion der Ergebnisse... 69
4.3.3.3 Forschungsbedarf.. 70
4.4 Ökonomische Bewertung .. 70
4.4.1 Methodik .. 70
4.4.1.1 Ein- und Ausschlusskriterien ... 70
4.4.1.2 Datenquellen, Selektion, Aufbereitung und Bewertung der Information... 72
4.4.1.2.1 Datenquellen .. 72
4.4.1.2.2 Informationsselktion... 72
4.4.1.2.3 Extraktion der Information.. 72
4.4.1.2.4 Bewertung der Studienqualität.. 74
4.4.1.3 Informationssynthese... 74
4.4.1.3.1 Währungs konversion und Inflationsbereinigung 74
4.4.1.3.2 Tabellarische Zusammenfassung... 74
4.4.1.3.3 Übertragbarkeit auf das deutsche Gesundheitswesen........... 74
4.4.2 Ergebnisse.. 75
4.4.2.1 Ergebnis der systematischen Literaturrecherche und Selektion der Literaturstellen........... 75
4.4.2.2 Darstellung der ausgeschlossenen Studie zur Kosteneffektivität antioxidativer Vitamine.. 75
4.4.2.2.1 Fragestellung... 75
4.4.2.2.2 Methodik ... 75
4.4.2.2.3 Effekte ... 75
4.4.2.2.4 Kosten ... 75
4.4.2.2.5 Ergebnisse... 76
4.4.2.2.6 Schlussfolgerung der Autoren.. 76
4.4.3 Diskussion ... 76
4.5 Zusammenfassende Diskussion aller Ergebnisse...................... 77
4.6 Schlussfolgerung... 77
5 Anhang .. 78
5.1 Abkürzungsverzeichnis.. 78
5.2 Glossar .. 83
5.3 Tabellenverzeichnis... 88
5.4. Literaturrecherche.. 90
5.5 Checklisten für die Bewertung der medizinischen Wirksamkeit... 104
Antioxidative Vitamine zur Prävention kardiovaskulärer Erkrankungen nach Nierentransplantation und bei chronischer Niereninsuffizienz

1 Gesundheitspolitischer Hintergrund

Bei den knappen finanziellen Ressourcen im Gesundheitswesen darf sich die Beurteilung einer medizinischen Technologie aber nicht nur auf die medizinische Effektivität beschränken sondern muss zusätzlich ökonomische Aspekte zur Evaluation ihrer Wirtschaftlichkeit erfassen. Im vorliegenden Health Technology Assessment (HTA)-Bericht sollen dementsprechend die medizinische Wirksamkeit und die Wirtschaftlichkeit der Supplementation mit den antioxidativen Vitaminen A, C, E bei Patienten mit chronischen Nierenerkrankungen und Patienten nach Nierentransplantation zur Prävention kardiovaskulärer Erkrankungen mittels einer systematischen Übersichtsarbeit der Literatur bewertet werden.
2 Zusammenfassung

2.1 Einleitung

2.2 Fragestellung

2.3 Methodik

Es wird eine systematische Literaturübersicht mit dokumentierter Literaturrecherche und -selektion, vorabdefinierten Ein- und Ausschlusskriterien sowie dokumentierter Extraktion und Bewertung der Literatur nach den Methoden der evidenzbasierten Medizin durchgeführt.

2.4 Ergebnisse

Die beiden randomisierten klinischen Studien zur Sekundärprävention mit oral supplementiertem Vitamin E bei Patienten mit gering- bis mittelgradiger Niereninsuffizienz bzw. bei Hämodialysepatienten zeigten unterschiedliche Ergebnisse. Während sich bei niereninsuffizienten Patienten nach 4,5 Jahren Supplementation mit 400 IU Vitamin E täglich weder ein protektiver noch ein risikoerhöhender Einfluss auf eine Kombination kardiovaskulärer Ereignisse aus Myokardinfarkt, Schlaganfall und Tod durch kardiovaskuläre Ursachen nachweisen ließ, berichtete die zweite Studie eine Halbierung des Risikos, einen tödlichen, einen nicht-tödlichen Myokardinfarkt, einen Schlaganfall, eine periphere vaskuläre Erkrankung oder eine instabile Angina zu erleiden, im Studienarm mit Vitamin E-Supplementation von 800 IU täglich (RR = 0,46 95 %-KI: 0,27-0,78 p = 0,014)

In 16 von 17 Studien mit intermediären Endpunkten war die Vitaminsupplementation bei einer oder mehrerer der untersuchten Zielgrößen mit einer Veränderung in der erwarteten Richtung zu beobachten, d. h. die Konzentrationen der Marker für oxidativen Stress nahmen in der Interventionsgruppe ab, die Progression der Kalzifizierung der Aorten (nur eine Studie) war geringer, die Intima-Media-Dicke nahm ab und das Lipidprofil zeigte positive Veränderungen.

Zur Wirtschaftlichkeit liegen keine Ergebnisse aus Studien vor.
2.5 Diskussion

2.6 Schlussfolgerung
Die Evidenz ist nicht ausreichend, um eine Aussage über einen sekundärpräventiven Effekt antioxidativer Vitamine bei kardiovaskulären Erkrankungen bei Patienten mit chronischer Niereninsuffizienz oder Nierenersatztherapie treffen zu können. Es fehlen randomisierte, placebokontrollierte Studien mit ausreichenden Fallzahlen mit klinischen Endpunkten kardiovaskulärer Erkrankungen, die den Einfluss oral applizierter oder durch beschichtete Hämodialysemembranen verabreichter antioxidativer Vitamine bei dieser Patientengruppe untersuchen.

Kurzfassung

Einleitung

Fragestellung

Zur Bewertung der medizinischen Wirksamkeit werden im Einzelnen folgende Fragenkomplexe untersucht:

1. Kann der Einsatz der antioxidativen Vitamine A, C oder E bei Patienten ohne kardiovaskuläre Vorerkrankung, die eine Nierentransplantation, eine chronische Niereninsuffizienz oder diabetische Nephropathie aufweisen, das Auftreten von patientenrelevanten kardiovaskulären Erkrankungen und Todesfällen reduzieren (Wirksamkeit in der Primärprävention)?

2. Kann der Einsatz der antioxidativen Vitamine A, C oder E bei Patienten mit kardiovaskulärer Vorerkrankung, die eine Nierentransplantation, eine chronische Niereninsuffizienz oder diabetische Nephropathie aufweisen, das Auftreten von patientenrelevanten kardiovaskulären Erkrankungen und Todesfällen reduzieren (Wirksamkeit in der Sekundärprävention)?

3. Wie groß sind die erzielte Risikoreduktion und der Anteil der durch eine Prävention zu verhindern den Ereignisse in Primär- oder Sekundärprävention, falls jeweils ein reduzierender Effekt antioxidativer Vitamine nachweisbar ist?

4. In welcher Dosierung und Applikationsform erwiesen sich die genannten antioxidativen Vitamine einzeln oder in Kombination in der Primär- oder Sekundärprävention als wirksam, falls eine Wirksamkeit nachgewiesen werden konnte?

Die ökonomische Bewertung untersucht anhand einer systematischen Übersichtsarbeit von gesundheitsökonomischen Studien die ökonomischen Aspekte, insbesondere die Kosteneffektivität einer
Supplementation mit den genannten Vitaminen zur Verminderung kardiovaskulärer Ereignisse. Im Einzelnen werden folgende Fragen untersucht:

1. Wie hoch sind die Kosten für eine Prävention mit antioxidativen Vitaminen pro Patient?
2. Wie hoch sind die zusätzlichen Nettokosten einer Intervention mit antioxidativen Vitaminen (Kosten für die Intervention abzüglich der Einsparungen durch vermiedene kardiovaskuläre Ereignisse) pro zusätzlichem, ereignisfreiem Überleben im Vergleich ohne Intervention? Als Ereignis kommen patientennahe kardiovaskuläre Ereignisse oder eine Kombination mehrerer kardiovaskulärer Ereignisse in Frage.

3.3 **Medizinische Bewertung**

3.3.1 **Methodik**

3.3.1.1 **Einschlusskriterien für die medizinische Evaluation**

Es werden alle Primärstudien eingeschlossen, die die folgenden Kriterien zu Studienpopulation, untersuchten Technologien und Vergleichtecnologien, Zielgrößen und Studientypen erfüllen:

Technologien und Vergleichstechnologien: Vitamin A, C, E einzeln oder kombiniert mit genau definierter Dosis und Vitamin E-beschichtete Dialysemembranen bei Hämodialysepatienten. Als Vergleichstechnologien werden entweder Placeboverabreichung oder eine Dialysemembran ohne Vitamin E, deren Biokompatibilität der der Vitamin E-Membran vergleichbar ist, als geeignet anerkannt.

Zielgrößen: klinische Endpunkte kardiovaskulärer Erkrankungen mit einem Mindest-Follow-Up von sechs Monaten, intermediäre Endpunkte wie oxidativer Stress oder Vorstufen kardiovaskulärer Erkrankungen ohne Beschränkung des Follow-Up-Zeitraums

Studientypen: randomisierte klinische Studien, nicht-randomisierte kontrollierte Interventionsstudien mit parallelen Vergleichsgruppen, prospektive Beobachtungsstudien mit parallelen Vergleichsgruppen.

3.3.1.2 **Literaturrecherche**

3.3.1.3 **Auswahl, Bewertung und Extraktion der Literatur**

Die o. g. Ein- und Ausschlusskriterien werden verwendet, um die Artikel anhand ihrer Titel und Zusammenfassungen primär thematisch vorzuselektieren und für potenziell in Frage kommende Artikel eine Volltextversion zu bestellen. Zwei Mitarbeiter beurteilen die in Volltext bestellten Literaturstellen unabhängig voneinander daraufhin, ob sie eingeschlossen werden sollen. Alle Selektionsschritte werden in Form der Referenzlisten beim DIMDI hinterlegt. Ausschlussgründe für die im Volltext bestellte Literatur werden angegeben.

Die Bewertung der eingeschlossenen Artikel erfolgt anhand von standardisierten Checklisten, die Extraktion anhand von der Auswertung entwickelten Extraktionstabellen und -formulare.

3.3.1.4 **Informationssynthese**

Es erfolgte eine Gliederung der berücksichtigten Studien nach Art der Intervention (orale Vitamin-supplementation oder Infusion und Dialyse mit Vitamin E-beschichteter Membran), eine Beschreibung und Qualitätsbewertung der berücksichtigten Studien und eine tabellarische, qualitative Informationssynthese.
3.3.2 Ergebnisse

3.3.2.1 Ergebnisse der Literaturrecherche

3.3.2.2 Antioxidative Vitamine zur Primärprävention klinischer kardiovaskulärer Endpunkte

Studien mit einer Population ohne kardiovaskuläre Vorerkrankung und klinische Zielgrößen, wie manifeste kardiovaskuläre Erkrankungen oder Todesfälle, konnten nicht identifiziert werden.

3.3.2.3 Antioxidative Vitamine zur Sekundärprävention klinischer kardiovaskulärer Endpunkte

Es konnten zwei randomisierte, placebokontrollierte Studien zu dieser Fragestellung identifiziert werden. In der SPACE-Studie zeigte sich bei Hämodialysepatienten (n = 196) nach einem Follow-Up von im Median 1,4 Jahren (519 Tage) ein protektiver Effekt des oral verabreichten Vitamin E von 800 IU pro Tag auf die kombinierte Ereignisrate aus tödlichem und nicht-tödlichem Myokardinfarkt, Schlaganfall, peripherer vaskulärer Erkrankung und instabiler Angina in der Interventionsgruppe im Vergleich zur Kontrollgruppe (RR = 0,46 95 %-KI: 0,27-0,78, p = 0,014). Die zweite Publikation zu dieser Fragestellung stellte eine Post-Hoc-Analyse der Subgruppe der Patienten mit gering- und mittelgradiger Niereninsuffizienz der HOPE-Studie dar (n = 993). Die Intervention bestand hier in einer täglichen Dosis von 400 IU Vitamin E. Nach einem medianen Follow-Up von 4,5 Jahren konnte kein statistisch signifikanter und klinisch relevanter Effekt auf die kombinierte Ereignisrate von kardialen Todesfällen, nicht-tödlichem Myokardinfarkt und Schlaganfall nachgewiesen werden.

Die methodische Qualität dieser Studien war gut. Es handelte sich um doppelt verblindete randomisierte multizentrische Studien mit verdeckter Studienzuweisung und guter Planungs- und Durchführungsqualität.

3.3.2.4 Der Einfluss antioxidativer Vitamine auf intermediäre Zielgrößen

17 Studien wurden identifiziert, die entweder den Einfluss von oraler Vitamin E- oder Vitamin C-Supplementation oder intravenöser Vitamin C-Infusion (sechs Publikationen) oder den Einfluss von Dialysemembranen mit Vitamin E-Beschichtung (zwölf Publikationen, eine davon in beiden Kategorien) auf Biomarker für oxidativen Stress oder Risikofaktoren für kardiovaskuläre Erkrankungen oder Gefäßveränderungen als Zielgrößen untersuchten.

Bei 16 von 17 Studien war die Vitaminsupplementation bei einer oder mehrerer der untersuchten Zielgrößen mit einer Veränderung in der erwarteten Richtung zu beobachten, d.h. die Konzentrationen der Marker für oxidativen Stress nahmen in der Interventionsgruppe ab, die Progression der Kalzifizierung der Aorten (nur eine Studie) war geringer, die Intima-Media-Dicke nahm ab und das Lipidprofil zeigte positive Veränderungen. Bei einem Großteil der Studien wurde die statistische Unsicherheit in Form von Hypothesentests nur für Prä-Post-Vergleiche innerhalb des jeweiligen Studienarms angegeben, jedoch nicht für den eigentlich relevanten Vergleich zwischen Interventions- und Kontrollgruppe.

Die methodische Qualität der 17 Studien war insgesamt stark eingeschränkt, so dass eine Verzerrung der Ergebnisse durch unterschiedliche Verteilung von potenziellen Störgrößen zwischen Kontroll- und Interventionsgruppen wahrscheinlich ist. Inwiefern es sich um repräsentative Stichproben der entsprechenden Zielpopulationen im klinischen Alltag handelt, lässt sich aufgrund der schlechten Planungs- und Berichtsqualität ebenfalls kaum abschätzen.

3.3.3 Diskussion

Es konnten nur zwei Studien identifiziert werden, die patientenrelevante Zielgrößen in der Form des Auftretens klinischer Ereignisse kardiovaskulärer Erkrankungen untersuchten. Beide Studien kommen
zu unterschiedlichen Ergebnissen. Mögliche Erklärungen für das unterschiedliche Resultat können in den unterschiedlichen Studienpopulationen mit verschiedenen hohen Erkrankungsrisiken, in der unterschiedlichen Dosierung bei der Intervention oder in zufälliger Variation liegen.

3.4 Ökonomische Bewertung

3.4.1 Methodik

3.4.2 Ergebnisse

In der Literaturrecherche konnte keine gesundheitsökonomische Studie identifiziert werden, die den Einschlusskriterien entsprach. Ergebnisse zur Wirtschaftlichkeit einer kardiovaskulären Prävention durch antioxidative Vitamine bei Patienten nach Nierentransplantation, bei dialysepflichtigen Patienten oder Patienten mit chronischer Niereninsuffizienz liegen nicht vor.

3.4.3 Diskussion

Untersuchungen der Wirtschaftlichkeit setzen voraus, dass ein gesicherter medizinischer Effekt nachgewiesen ist. Dies ist derzeit nicht der Fall. In Deutschland betragen die Kosten für eine jährliche Therapie mit einer täglichen Dosis von 400 mg Vitamin E ca. 93 EURO (Rote Liste © Juli 2005, Größe N3). Dies wären vergleichsweise niedrige Kosten, wenn bei einer Population, die wie Patienten mit Nierenerkrankungen und Nierentransplantation ein hohes Risiko für kardiovaskuläre Ereignisse haben eine Reduktion der Ereignishäufigkeit erreicht werden könnte, da kardiovaskuläre Ereignisse auch in Deutschland mit hohen Kosten verbunden sind.

3.5 Schlussfolgerung

Die Evidenz ist nicht ausreichend, um eine Aussage über einen sekundärpräventiven Effekt antioxidativer Vitamine bei kardiovaskulären Erkrankungen bei Patienten mit chronischer Niereninsuffizienz oder Nierenersatztherapie treffen zu können. Es fehlen randomisierte, placebokontrollierte Studien mit ausreichenden Fallzahlen mit klinischen Endpunkten kardiovaskulärer Erkrankungen, die den Einfluss oral applizierter oder durch beschichtete Hämodialysemembranen verabreichter antioxidativer Vitamine bei dieser Patientengruppe untersuchen.

Zur Primärprävention kardiovaskulärer Erkrankungen durch die Supplementation antioxidativer Vitamine bei den genannten Patientengruppen stehen keine Daten zur Verfügung, so dass hier ebenfalls keine Aussagen getroffen werden können. Im Unterschied zur Situation bei Patienten mit
kardiovaskulärer Vorerkrankung ohne Nierenerkrankung, wo die Evidenz mittlerweile ausreichend ist, um einen sekundärpräventiven Effekt der untersuchten antioxidativen Vitamine auszuschließen, ist die Frage bei Patienten mit chronischer Niereninsuffizienz und Nierenersatztherapie noch ungeklärt. Bevor die Wirtschaftlichkeit einer Primär- oder Sekundärprävention einer antioxidativen Vitamin-supplementation auf kardiovaskuläre Erkrankungen untersucht werden kann, muss die Frage der medizinischen Wirksamkeit geklärt werden.
4 Hauptdokument

4.1 Einleitung

4.1.1 Beschreibung der Zielerkrankung

4.1.1.1 Kardiovaskuläre Erkrankung

4.1.1.2 Chronische Niereninsuffizienz

Die Funktion der Niere beschränkt sich nicht nur auf die Absonderung vorwiegend stickstoffhaltiger Stoffwechselendprodukte wie Harnstoff, Kreatinin, Harnsäure, Ammoniak oder Medikamente und Fremdstoffe, sie übernimmt daneben noch vielfältige Regulierungen des gesamten Stoffwechsels. Sowohl der Säure-Base-Haushalt als auch der Ionen- und Wasserhaushalt unterliegt größtenteils ihrer Kontrolle. Des Weiteren besitzt die Niere eine endokrine Funktion. Die wichtigsten Hormone sind dabei das Renin, das maßgeblich zur arteriellen Blutdruckregulierung beiträgt, und das Hormon Erythropoetin, das zur Bildung der roten Blutkörperchen benötigt wird. Aus Vitamin D bildet die Niere das eigentlich wirksame Vitamin-D-Hormon (Calcitriol), das für den Knochenstoffwechsel und für die Kalziumaufnahme aus dem Darm von Bedeutung ist.

Die funktionelle Einheit der Niere ist das Nephron. In jeder Niere finden sich ca. ein bis zwei Millionen Nephrone. Sie gliedern sich in das Nierenkörperchen, das in der Rinde liegt, und das Tubulussystem, das im Mark zu finden ist. Das Nierenkörperchen, in dem die Urinbildung erfolgt, besteht aus einem Knäuel von Arteriolen (Glomerulum), das von einem Epithel, der so genannten Bowmannschen Kapsel, bedeckt wird.

Der renale Blutfluss entspricht etwa 25 % des vom Herzen geförderten Blutvolumens. In den Glomerulumkapillaren wird das Blutplasma ultrafiltriert, d. h. dass die Plasmaporeine in den Kapillaren verbleiben und das Filtrat durch eine den Kapillaren aufliegende Basalmembran als Primärharn in die Bowmannsche Kapsel abgegeben wird. Möglich ist die Filtration durch einen Druckunterschied des hydrostatischen Drucks, der vom Herzen aufgebaut wird, und dem kolloidosmotischen Druck. Die pro Minute von beiden Nieren gefilterte Plasmamenge bezeichnet man als glomeruläre Filtrationsrate (GFR). Die GFR ist demnach vom Blutdruck und von der Funktionalität der Basalmembran abhängig, wird aber auch durch die Niere selbst reguliert und gilt als ein wichtiger diagnostischer Marker für die Nierenfunktion.

Im Tubulussystem erfolgt die Rückresorption des Wassers und darin gelöster Stoffe, dessen Volumen 99 % des Primärharns beträgt. Neben der Rückführung des Wassers in den Blutkreislauf werden bei diesem Schritt Substanzen rückresorbiert, die bei der glomerulären Filtration durch die Basalmembran gelangen. Dabei handelt es sich um Kalium-, Natrium-, Magnesium- und Chlorid-Ionen, die der homöostatischen Regulierung dienen, um Bicarbonat, das für das Säure-Base-Gleichgewicht verantwortlich ist, und auch um größere Moleküle, wie Glukose, Harnstoff und niedrigmolekulares Albumin (Protein). Im Gegensatz zur Glukose, die vollständig rückresorbiert wird, werden das Polysaccharid
Inulin und das basische Endprodukt des Muskelstoffwechsels Kreatin von einer gesunden Niere nicht resorbiert (Keller 2002).

4.1.1.2.1 Definition der Niereninsuffizienz

<table>
<thead>
<tr>
<th>Stadium</th>
<th>Beschreibung</th>
<th>GFR (mL/min/1,73m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Nierenschädigung mit normaler oder höherer GFR</td>
<td>> 90</td>
</tr>
<tr>
<td>2</td>
<td>Nierenschädigung mit gering erniedriger GFR</td>
<td>60 bis 89</td>
</tr>
<tr>
<td>3</td>
<td>Nierenschädigung mit moderat erniedriger GFR</td>
<td>30 bis 59</td>
</tr>
<tr>
<td>4</td>
<td>Nierenschädigung mit deutlich erniedriger GFR</td>
<td>15 bis 29</td>
</tr>
<tr>
<td>5</td>
<td>Nierenversagen</td>
<td>< 15 (oder Dialyse)</td>
</tr>
</tbody>
</table>

GFR = Glomeruläre Filtrationsrate.

Ein Nierenversagen ist dann gegeben, wenn die GFR unter 15 ml/min/1,73 m² sinkt und sich Symptome einer Urämie häufen. Auch wenn unabhängig von der GFR eine Nierenersatztherapie zur Abwendung lebensbedrohlicher Risiken indiziert ist, spricht man von Nierenversagen.

4.1.1.2.2 Klinik

4.1.1.2.3 Ätiologie

Die chronische Niereninsuffizienz entsteht meist als Folge chronischer Erkrankungen. Die Ursachen für terminales Nierenversagen sind im Folgenden wiedergegeben. Die Prozentangaben in Klammern

DAHTA@DIMDI 10
beziehen sich auf die Diagnose beim Beginn der Ersatztherapie aller deutschen Nierenpatienten 2003 (Frei 2003 / 2004).

- Diabetische Nephropathie (36 %): Eine Nierenschädigung durch Diabetes mellitus. Dabei ist Diabetes Typ II am häufigsten diagnostiziert, Diabetes Typ I wird nur bei 3 % diagnostiziert und überwiegt in der Gruppe der jüngeren Patienten.
- Chronische Glomerulonephritis (ca. 14 %): chronische Form der Entzündung der Glomeruli.
- Interstitielle Nephritis und chronische Pyelonephritis (8 %): chronische Nieren- und Nierenbeckenentzündung.
- Hypertonie vaskuläre Nephropathie (20 %): Nierenschädigung durch Bluthochdruck.
- Polyzystische Nephropathie (5 %): angeborene Nierenfehlbildung mit zahlreichen Zysten, die in der Regel ab dem 40. Lebensjahr zu Niereninsuffizienz führt.
- Analgetikanephropathie (ca. 5 %): Schädigung durch bestimmte Schmerzmittel.
- Systemerkrankungen (4 %) wie z. B. Vaskulitiden oder SLE (SLE = Systemischer Lupus Erythematodes: eine Bindegewebskrankung, die auch die Nieren betrifft; Vaskulitiden = Erkrankung der Nierenblutgefäße).
- Hereditär / Konngenital (1 %).
- Nicht-klassifizierte Ursachen (9 %).
- Sonstige (4 %).

4.1.1.2.4 Epidemiologie

4.1.1.2.5 Diagnostik der Niereninsuffizienz
Das einfachste Verfahren ist die Untersuchung des Urins mittels eines Urinstreifen-tests. Dadurch ergeben sich Hinweise auf das Vorliegen einer Glukosurie, Proteinurie, Erythrozyturie oder auch Leukozyturie.

GFR, die pro Minute von beiden Nieren gefilterte Plasmamenge, wird dabei mittels der renalen Clearance für Kreatinin abgeschätzt oder direkt gemessen. Die renale Clearance eines Stoffs beschreibt die Plasmamenge in ml, die pro Minute durch die Nierentätigkeit von diesem Stoff befreit wird.

Zur Abschätzung pathologischer Prozesse im Glomerulum wird die Proteinurie, z. B. mittels der Konzentration des Albumins im Urin bestimmt.
Eine makroskopische morphologische Beurteilung mittels Ultraschalldiagnostik oder Computertomographie der Nieren und eine mikroskopische mittels Nierenbiopsie gibt ebenfalls Aufschluss über das Vorliegen einer Niereninsuffizienz (Keller 2002).

4.1.1.2.6 Therapie der chronischen Niereninsuffizienz

4.1.1.2.6.1 Medikamente

4.1.1.2.6.2 Ersatzverfahren

4.1.1.2.6.3 Hämodialyseverfahren

4.1.1.2.6.4 Dialysatoren

Ein Dialysator besteht aus 10000 bis 15000 Kapillaren, durch die das Blut geführt wird. Zur Charakterisierung eines Dialysators werden die Clearancewerte für Harnstoff, Kreatinin, Phosphat und der Ultrafiltrationskoeffizient herangezogen. Letzterer bezeichnet das Volumen in ml, das bei einem Transmembrandruck von 1 mmHg in einer Stunde abfiltriert wird. Bei einem Ultrafiltrationskoeffizient von über 10 ml/mmHg wird der Dialysator als „high flux“-Dialysator betitelt, liegt der Koeffizient deutlich darunter spricht man von „low flux“-Dialysatoren. Einen weiteren Qualitätsfaktor stellt die Biocompatibilität dar, die weitgehend durch die Dialysemembran bestimmt wird (Keller 2002). Die Membranen, die heute Anwendung finden, bestehen entweder aus reinen Zellulose
Antioxidative Vitamine zur Prävention kardiovaskulärer Erkrankungen nach Nierentransplantation und bei chronischer Niereninsuffizienz

4.1.1.2.6.5 Effekte der Hämodialyse

4.1.1.2.6.6 Peritonealdialyse

4.1.1.2.6.7 Nierentransplantation
Dieses Verfahren ist die effektivste Behandlungsmethode der chronischen terminalen Niereninsuffizienz und gewährleistet eine optimale Blutreinigung. Allerdings induziert auch diese Behandlung eine Immunabwehr, hier gegen das körperfremde Organ. Immunsuppressiva wirken dieser entgegen, sie bedingen jedoch auch einen Anstieg des oxidativen Stresses (Blackhall et al. 2004).

4.1.1.3 Kardiovaskuläre Erkrankungen bei niereninsuffizienten Patienten
Kardiovaskuläre Erkrankungen in der Population der Nierenerkrankten werden durch mehrere endogene wie auch exogene Faktoren verursacht, die sich zudem in ihrer Wirkung gegenseitig beeinflussen und so eine hohe Prävalenz dieser Erkrankung hervorrufen.

4.1.1.3.1 Epidemiologie

4.1.1.3.2 Risikofaktoren
Die Risikofaktoren zur Entstehung kardiovaskulärer Erkrankungen lassen sich in zwei Gruppen einteilen: zum einen gibt es die so genannten traditionellen Risikofaktoren wie das Alter, Geschlecht,

4.1.1.3.3 Atherosklerose als grundlegender Prozess

4.1.1.3.4 Oxidantien und Antioxidantien
4.1.1.3.4.1 Oxidative Spezies
Die Bildung von reaktiven Spezies und der intrazelluläre Redoxzustand spielen eine zentrale Rolle für die Entstehung der Atherosklerose. Eine Schlüsselstellung nimmt dabei die Oxidation des LDL ein. Die reaktiven Spezies sind aber gleichermaßen auch für die endothelialen Dysfunktion und für die Thrombozytenaggregation verantwortlich, die in der Entwicklung der Atherosklerose ebenso wichtig sind (Gimbrone 1999, Annuk et al. 2003).
Antioxidative Vitamine zur Prävention kardiovaskulärer Erkrankungen nach Nierentransplantation und bei chronischer Niereninsuffizienz

4.1.1.3.4.2 Oxidativer Stress und sein Effekt

Alle ROS und reaktiven Stickstoffspezies sind extrem reaktiv und bewirken Schäden an Zellkompartimenten wie den Lipiden, den Proteinen und der DNA.

Die DNA-Schäden zeigen sich vor allem in der Anreicherung von 8-Hydroxy-2-Desoxyguanosin und anderen Basenmodifikationen, die ein verändertes Basenpaarungsverhalten zeigen. Es entstehen Einzel- oder Doppelstrangbrüche oder DNA-Addukte, die zur Dysfunktion der Zelle führen. Vor allem die DNA der Mitochondrien ist von diesen ROS-induzierten Schäden betroffen, weil sie direkt an der Quelle der ROS-Entstehung, der Mitochondrienmembran, lokalisiert ist.

4.1.1.3.4.3 Oxidativer Stress bei Niereninsuffizienten

Bei Hämodialysepatienten trägt die Dialyse selbst als ein weiterer Faktor zur Schädigung des antioxidativen Systems bei. So kann die Dialysemembran zur ROS-Bildung durch die Aktivierung von Leukozyten beitragen und antioxidativ wirkende Vitamine aus dem Blut filtern (Canaud et al. 1999). Auch bestimmte Medikamente, die urämische oder anämische Symptome korrigieren sollen, können ebenfalls zur Erhöhung der ROS beitragen. Die intravenöse Eisengabe und die Einnahme von Erythropoetin, die vorwiegend zur Blutbildung beitragen sollen, können für eine Zunahme an oxidativem Stress verantwortlich sein (Sommerburg et al. 1998).

Bei nierentransplantierten Patienten spielt neben den spezifischen Eigenschaften der Spendemiere die Art der immunsuppressiven Therapie eine große Rolle. Vor allem Cyclosporin A trägt durch
Verschlechterung der Mikrozirkulation und daraus resultierende Produktion von reaktiven Sauerstoff-
spezies zur Erhöhung des oxidativen Stresses bei (Blackhall et al. 2004).

4.1.1.3.4.4 Marker

Die hohe Reaktionsfähigkeit der reaktiven Spezies macht eine direkte Messung schwierig. Deswegen
greift man zur Bestimmung des Levels derselben auf die oxidierten stabilen Endprodukte oder auf
antioxidative Enzyme als Biomarker zurück. Einen einzigen Marker für die reaktiven Spezies gibt es
bislang nicht. Vielmehr gibt es eine ganze Reihe von möglichen Markern, die aber alle ihre spezi-
fölschen Schwächen aufweisen, so dass der oxidative Status meist anhand von mehreren Markern
gemessen wird (Halliwell et al. 2004). In Frage kommen dafür die von ROS geschädigte DNA, die
Endprodukte der Lipidperoxidation, die Oxidation von Proteinen und die Erfassung des antioxidativen
Status.

4.1.1.3.4.4.1 Oxidierte Lipide, Proteine und oxidativ geschädigte DNA als Marker

Da die ungesättigten Fettsäuren der Zellmembranen am häufigsten durch die ROS geschädigt
werden, können demnach Lipidperoxide bzw. deren Zerfallsprodukte am häufigsten gemessen
werden. Zunächst führt die Lipidperoxidation zur Bildung von Hydroperoxiden (konjugierte Diene), die
in verschiedene Aldehyde zerfallen, wie das MDA und das 4-Hydroxynonenal (4-HNE). MDA wurde
lange Zeit als einfachste Messung mittels der Reaktion mit Thiobarbitursäuren (TBA) nachgewiesen,
wobei das Addukt durch Erfassung der Absorption (spektrophotometrisch) oder der Fluoreszenz
quantitativ erfasst wird (Jentzsch et a. 1996). Allerdings ist dieser Test nicht immer spezifisch und
unterliegt zahlreichen Artefakten (Massy et al. 2002). So kann MDA auch mit anderen Aldehyden,
aber auch mit Kohlenhydraten oder Aminosäuren Komplexe bilden, die ähnliche Absorptionsspektren
aufweisen, oder die präanalytischen Verfahren begünstigen die Entstehung weiterer Chromogene
(Jentzsch et al. 1996). Auch die verbesserte Spezifität der Messung durch HPLC verhindert nicht die
Möglichkeit, dass dabei andere Derivate der Lipidoxidation gemessen werden (Cherubini et al. 2005).
Neuere Methoden sind Gaschromatographie/Massenspektroskopie, die die
Spezifität weiter erhöhen sollen.

Relativ stabile Endprodukte entstehen aus der Oxidation der in der Zellmembran verankerten Arachi-
donsäure. Diese Metaboliten werden F2-Isoprostane genannt und lassen sich gut im Plasma
nachweisen (Handelman 2000).

Eine weitere Methode ist die Bestimmung von Antikörpern gegen oxidiertes LDL. Diese Antikörper
stellen einen körpereigenen Schutz gegen oxidiertes LDL dar und verhindern dessen Permeabilität
durch die Gefäßwand. Auch in vitro kann man indirekt den oxidativen Status bestimmen, indem die
Oxidierbarkeit des LDL dargestellt wird. Die unterschiedlich schnell verlaufende Peroxidationsreaktion
von mehrfach ungesättigten Fettsäuren kann zur Beurteilung des antioxidativen Potentials von LDL
herangezogen werden. Meist wird die Oxidierbarkeit des LDL anhand der Dauer der ersten Phase
(lag-Phase) dieser Reaktion, in der die zur Verfügung stehenden Antioxidantien verbraucht werden,
gemessen (Esterbauer et al. 1989).

Oxidierte Proteine und Aminosäuren eignen sich ebenfalls gut als Marker für oxidativen Stress.
3-Chlorotyrosin, 3-Nitrotyrosin und Dityrosin sind typische Vertreter dieser Gruppe, die aus der
Oxidation von Tyrosinresten resultieren (Bader et al. 2004). Durch eine Reaktion zwischen Carbonyl-
verbindungen mit Aminogruppen bildet sich eine Gruppe komplexer Verbindungen, die unter der
Bezeichnung „advanced glycosylation end products“ (AGE) zusammengefasst werden (Wautier et al. 2001).
Manche dieser Endprodukte wie Carboxymethyllys in oder Pentosidin können
über Gaschromatographie oder mittels HPLC nachgewiesen werden (Massy et al. 2002)
Der Einfluss der reaktiven Spezies auf die DNA wird hauptsächlich durch die Bestimmung der
Konzentration der modifizierten Guaninbase bestimmt (Tarrng et al. 2000).

4.1.1.3.4.4.2 Enzymatischer Antioxidantien als Marker

Enzymatischen Antioxidantien werden gebildet, um die toxische Wirkung der freien Radikalen
einzuschränken. Ihre Konzentrationen im Plasma können bestimmt werden und lassen Rückschlüsse
auf den oxidativen Stress zu. Wichtigste Vertreter sind dabei die Superoxid-Dismutase (SOD), die
Katalase und die Glutathion-Peroxidase. Die SOD überführt zunächst das Superoxid-Anion zu
Wasserstoffperoxid. Dieses wird entweder mit Hilfe der Katalase in Wasser und Sauerstoff oder mit
Hilfe der Glutathion-Peroxidase in Glutathiondisulfid und Wasser überführt (Schiller et al. 1993).
4.1.1.3.4.4.3 Nichtenzymatische Antioxidantien als Marker

4.1.2 Beschreibung der Technologie

4.1.2.1 Vitamine als Antioxidantien

Vitamine nehmen unter den Radikalfängern eine Sonderstellung ein, weil sie mit der Nahrung zugeführt werden müssen. Die wichtigsten Antioxidantien dieser Gruppe stellen Ascorbinsäure (Vitamin C), die Tocopherole (Vitamin E) und das Betakarotin dar. Die normalen Plasmakonzentrationen befinden sich für Vitamin C zwischen 30 und 150 µmol/l, für alpha–Tocopherol zwischen 0,05 µmol/l und 0,1 und für Betakarotin zwischen 0,3 und 0,6 µmol/l.

Antioxidative Vitamine zur Prävention kardiovaskulärer Erkrankungen nach Nierentransplantation und bei chronischer Niereninsuffizienz

4.1.2.2 Epidemiologische Studien zur Wirkung antioxidativer Vitamine auf kardiovaskuläre Erkrankungen

Da kardiovaskuläre Erkrankungen mit einem erhöhten oxidativen Stress assoziiert sind, der die Progression der Atherosklerose bedingt, liegt es nahe, dieser durch eine Supplementierung mit antioxidativen Vitaminen zu begegnen.

Die Diskrepanz zwischen den Ergebnissen der Beobachtungs- und der Interventionssstudien erklärten die Autoren des HTA-Berichts damit, dass entweder die in den Interventionen getesteten Antioxidantien die für den positiven Effekt in den Beobachtungsstudien verantwortlichen Substanzen nicht enthielten oder dass die Beobachtungsstudien durch einen anderen Effekt verzerrt wurden. Der HTA-Bericht für die AHQR macht keine Aussagen zu speziellen Subpopulationen wie den hier interessierenden Patienten mit Niereninsuffizienz im Endstadium bzw. Patienten nach Nierentransplantationen. Hierzu ist wenig bekannt. In einer randomisierten klinischen Studie, in der 600 mg/BID Acetylcystein als Antioxidantium verwendet worden waren, wurde ein protektiver Effekt für einen kombinierten Zielparameter aus Myokardinfarkt (tödlich und nicht-tödlich), Schlaganfall, peripherer arterieller Gefäßerkrankung und Revascularisationen der Herzkranzgefäße berichtet. Das relative Risiko der Interventions-(n = 64) gegenüber der Placebogruppe (n = 70) betrug 0,6 (95 %-Konfidenzintervall: 0,38-0,95) innerhalb von 14,5 Monaten (Tepel et al. 2003).

4.2 Fragestellung

Für Personen ohne Symptome einer kardiovaskulären Erkrankung und auch für Personen mit bestehender kardiovaskulärer Erkrankung ließ sich ein Effekt der Supplementierung mit den antioxidativen Vitaminen A, C oder E einzeln oder in Kombination auf das Auftreten (weiterer) kardiovaskulärer Ereignisse nicht nachweisen. Patienten nach Nierentransplantation, Patienten mit...

Zur Bewertung der medizinischen Wirksamkeit werden im Einzelnen folgende Fragenkomplexe untersucht:

1. Kann der Einsatz der antioxidativen Vitamine A, C oder E bei Patienten ohne kardiovaskuläre Vorerkrankung, die eine erfolgte Nierentransplantation, eine chronische Niereninsuffizienz oder diabetischer Nephropathie aufweisen, das Auftreten von patientenrelevanten kardiovaskulären Erkrankungen und Todesfällen reduzieren (Wirksamkeit in der Primärprävention)?

2. Kann der Einsatz der antioxidativen Vitamine A, C oder E bei Patienten mit kardiovaskulärer Vorerkrankung, die eine erfolgte Nierentransplantation, eine chronische Niereninsuffizienz oder diabetischer Nephropathie aufweisen, das Auftreten von patientenrelevanten kardiovaskulären Erkrankungen und Todesfällen reduzieren (Wirksamkeit in der Sekundärprävention)?

3. Wie groß sind die erzielte Risikoreduktion und der Anteil der durch eine Prävention zu verhindern den Ereignisse in Primär- oder Sekundärprävention, falls jeweils ein reduzierender Effekt antioxidativer Vitamine nachweisbar ist?

4. In welcher Dosierung und Applikationsform erwiesen sich die genannten antioxidativen Vitamine einzeln oder in Kombination in der Primär- oder Sekundärprävention als wirksam, falls eine Wirksamkeit nachgewiesen werden konnte?

Die ökonomische Bewertung untersucht anhand einer systematischen Übersichtsarbeit von gesundheitsökonomischen Studien die ökonomischen Aspekte, insbesondere die Kosten effektivität einer Supplementation mit den genannten Vitaminen zur Verminderung kardiovaskulärer Ereignisse. Im Einzelnen werden folgende Fragen untersucht:
1. Wie hoch sind die Kosten für eine Prävention mit antioxidativen Vitaminen pro Patient?
2. Wie hoch sind die zusätzlichen Nettokosten einer Intervention mit antioxidativen Vitaminen (Kosten für die Intervention abzüglich der Einsparungen durch vermiedene kardiovaskuläre Ereignisse) pro zusätzlichem, ereignisfreiem Überleben im Vergleich ohne Intervention? Als Ereignis kommen patientennahe kardiovaskuläre Ereignisse oder eine Kombination mehrerer kardiovaskulärer Ereignisse in Frage.

4.3 Medizinische Bewertung
4.3.1 Methodik
Zur Bestimmung von Ein- und Ausschlusskriterien für die in die Informationssynthese aufzunehmende Literatur müssen die Studienpopulation, die zu vergleichenden Technologien, die zu analysierenden Ergebnisparameter und die Studientypen näher spezifiziert werden, die geeignet erscheinen, um die Frage nach der Wirksamkeit von antioxidativen Vitaminen zur Prävention kardiovaskulärer Erkrankungen zu beantworten. Im Anschluss werden zu durchsuchende Datenquellen und die Selektion, Extraktion und Bewertung der identifizierten Information zum Einschluss in die Informationssynthese angegeben.

4.3.1.1 Studienpopulation, verglichene Technologien, Zielgrößen und Studientypen
4.3.1.1.1 Studienpopulation
In der Allgemeinbevölkerung hat sich eine Wirksamkeit des Einsatzes antioxidativer Vitamine zur Primär- und Sekundärprävention von kardiovaskulären Erkrankungen nicht nachweisen lassen. Für bestimmte Patientengruppen ist jedoch ein erhöhter oxidativer Stress in den Körperzellen gegenüber denen der Allgemeinbevölkerung bekannt, so dass hier der Einsatz antioxidativer Vitamine eher Erfolg versprechend sein könnte. Bei den folgenden Patientengruppen werden sowohl Patienten, die bereits kardiovaskuläre Erkrankungen wie Angina pectoris, Myokardinfarkt, Schlaganfall oder periphere Verschlusskrankheit aufweisen (Sekundärprävention), als auch Patienten ohne symptomatische kardiovaskuläre Erkrankungen (Primärprävention) eingeschlossen:

- Patienten nach Nierentransplantation
- Dialysepflichtige Patienten
- Nicht-dialysepflichtige Patienten mit chronischen Nierenenerkrankungen
- Patienten mit diabetischer Nephropathie.

4.3.1.1.2 Vergleichene Technologien
Grundsätzlich ist die Supplementation mit antioxidativen Vitaminen auf verschiedenen Wegen möglich. In bisherigen Studien erfolgte die Applikation sowohl über die Aufnahme besonders vitaminreicher Nahrungsmittel (z. B. Säfte) als auch durch Supplemetationspräparate mit genau definierter Dosierung. Bei Patienten, die sich einer Hämodialyse unterziehen müssen, ist auch die Verwendung von Dialysemembranen möglich, an die Vitamin E gebunden ist, das bei der Dialyse vom Patienten aufgenommen wird. Die Verabreichung antioxidativer Vitamine in Form von Nahrungsmitteln wird aus der Analyse ausgeschlossen, weil hier zum einen keine Quantifizierung der Dosierung der Vitamingaben möglich ist und zum anderen nicht ausgeschlossen werden kann, dass andere Nahrungsbestandteile als antioxidative Vitamine für eventuell erzielte Effekte verantwortlich sind. Für die vorliegende Analyse werden nur Studien berücksichtigt, die

- die Vitamine A, C, E entweder einzeln oder in Kombination mit genau definierter Dosierung in Form eines Supplementationspräparates verabreichen
- die Supplementation von Vitamin E bei Hämodialysepatienten über die Dialysemembran erreichen.

In kontrollierten Studien werden als Vergleichstechnologien

- die Verabreichung von Placebo bzw.
- der Einsatz von der bis auf die Vitamin E-Beschichtung möglichst identischen Dialysemembran oder einer Membran, die eine vergleichbare Biokompatibilität wie die Membran mit Vitamin E-Beschichtung aufweist, da sonst eine Unterscheidung des Effekts von Vitamin E und der Effekte anderer Unterschiede in der Membran nicht möglich ist, als geeignet betrachtet.
4.3.1.1.3 Zielgrößen

Tabelle 2: Mögliche Zielgrößen in Studien zur Wirkung antioxidativer Vitamine auf kardiovaskuläre Erkrankungen.

<table>
<thead>
<tr>
<th>Zielgrößen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Klinische Zielgrößen</td>
</tr>
<tr>
<td>Tod (kardiale Ursache oder Gesamt mortalität)</td>
</tr>
<tr>
<td>Herzinfarkt</td>
</tr>
<tr>
<td>Revaskularisation</td>
</tr>
<tr>
<td>Perkutane Koronarintervention</td>
</tr>
<tr>
<td>Bypasschirurgie</td>
</tr>
<tr>
<td>Schlaganfall, Hirnblutungen (CVA)</td>
</tr>
<tr>
<td>Kombinierte Endpunkte aus Teilmengen der genannten Parameter (MACE, MACCE)</td>
</tr>
<tr>
<td>Periphere vaskuläre Erkrankung</td>
</tr>
<tr>
<td>Lebensqualität</td>
</tr>
<tr>
<td>Intermediäre Zielgrößen</td>
</tr>
<tr>
<td>Vorstufen kardiovaskulärer Erkrankungen</td>
</tr>
<tr>
<td>Dicke der Carotismedia</td>
</tr>
<tr>
<td>Kalzifizierung von Gefäßen</td>
</tr>
<tr>
<td>Veränderte Motilität von Gefäßen</td>
</tr>
<tr>
<td>Messung von oxidativem Stress</td>
</tr>
</tbody>
</table>

CV = Cerebrovascular Accident. MACE = Major Adverse Cardiac Event. MACCE = Major Adverse Coronary and Cerebral Events.

4.3.1.2 Ein- und Ausschlusskriterien für die Aufnahme in die Informationssynthese

Eingeschlossen werden alle Primärstudien, die die oben genannten Kriterien bezüglich Studienpopulation, Technologie, Zielgröße und Studientyp erfüllen. Zusätzlich werden evidenzbasierte Leitlinien, HTA-Berichte, Metaanalysen und systematische Übersichtsarbeiten zur Effektivität antioxidativer Vitamine bei Patienten nach Nierentransplantation, mit chronischen Nierenerkrankungen...
Antioxidative Vitamine zur Prävention kardiovaskulärer Erkrankungen nach Nierentransplantation und bei chronischer Niereninsuffizienz

Tabelle 3: Einschlusskriterien für Literaturstellen zur Bewertung der medizinischen Wirksamkeit.

<table>
<thead>
<tr>
<th>Einschlusskriterien</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primärstudien, bei denen alle folgende Kriterien bezüglich Studienpopulation, verglichener Technologien, Zielgrößen und Studientypen erfüllt sind</td>
</tr>
<tr>
<td>Studienpopulation</td>
</tr>
<tr>
<td>Patienten nach Nierentransplantation</td>
</tr>
<tr>
<td>Dialysepflichtige Patienten</td>
</tr>
<tr>
<td>Nicht-dialysepflichtige Patienten mit chronischen Nierenerkrankungen</td>
</tr>
<tr>
<td>Patienten mit diabetischer Nephropathie</td>
</tr>
<tr>
<td>Patienten der o. g. Gruppen sowohl mit als auch ohne kardiovaskuläre Vorerkrankung</td>
</tr>
<tr>
<td>Technologien</td>
</tr>
<tr>
<td>Studien, die Vitamine A, C, E entweder einzeln oder in Kombination mit genau definierter Dosierung in Form eines Supplementationspräparates verabreichen</td>
</tr>
<tr>
<td>Studien, die Supplementation von Vitamin E bei Hämodialysepatienten über die Dialysemembran erfolgt</td>
</tr>
<tr>
<td>Vergleichstechnologien in kontrollierten Studien</td>
</tr>
<tr>
<td>Verabreichung von Placebo bzw.</td>
</tr>
<tr>
<td>Einsatz von der bis auf die Vitamin E-Beschichtung identischen Dialysemembran</td>
</tr>
<tr>
<td>Zielgrößen</td>
</tr>
<tr>
<td>Studien mit klinischen Endpunkten kardiovaskulärer Erkrankungen (Myokardinfarkte, kardiovaskulärer Tod, Schlaganfälle, Revaskularisierungen, periphere vaskuläre Erkrankung, Lebensqualität) oder der Gesamtmortalität mit einem Follow-Up von mindestens sechs Monaten</td>
</tr>
<tr>
<td>Studien mit intermediären Endpunkten wie oxidativem Stress oder Vorstufen kardiovaskulärer Erkrankungen ohne Beschränkung des Follow-Up-Zeitraums</td>
</tr>
<tr>
<td>Studientypen</td>
</tr>
<tr>
<td>Randomisierte klinische Studien</td>
</tr>
<tr>
<td>Nicht-randomisierte kontrollierte Interventionstudien mit parallelen Vergleichsgruppen</td>
</tr>
<tr>
<td>Prospektive Beobachtungsstudien mit parallelen Vergleichsgruppen</td>
</tr>
</tbody>
</table>
Antioxidative Vitamine zur Prävention kardiovaskulärer Erkrankungen nach Nierentransplantation und bei chronischer Niereninsuffizienz

Tabelle 4: Ausschlusskriterien für Literaturstellen zur Bewertung der medizinischen Wirksamkeit.

<table>
<thead>
<tr>
<th>Ausschlusskriterien</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unsystematische Reviews</td>
</tr>
<tr>
<td>Tierexperimentelle Studien</td>
</tr>
<tr>
<td>Doppelpublikationen ohne zusätzliche Information</td>
</tr>
<tr>
<td>Zusammenfassungen, für die keine Volltexte zur Verfügung stehen</td>
</tr>
</tbody>
</table>

4.3.1.3 Datenquellen, Selektion, Extraktion und Bewertung der Information

4.3.1.3.1 Datenquellen

4.3.1.3.2 Selektion

4.3.1.3.3 Datenextraktion

Für die Primärstudien werden folgende Parameter in Tabellen extrahiert:

Art der Technologie: Art des Vitamins oder Kombination von Vitaminen, Dosierung und Begleitmedikation.

Patientencharakteristika: Alter, Geschlecht, KHK-Status, Nierenstatus.

Ergebnisparameter: Definition der Ergebnisparameter, alle angegebenen klinischen und intermediären Ergebnisparameter (siehe Tabelle 2).

4.3.1.3.4 Bewertung und Synthese der Information

Antioxidative Vitamine zur Prävention kardiovaskulärer Erkrankungen nach Nierentransplantation und bei chronischer Niereninsuffizienz

<table>
<thead>
<tr>
<th>Evidenzniveau</th>
<th>Studientyp</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Randomisierte kontrollierte Studie mit verdeckter Allokation</td>
</tr>
<tr>
<td>IIa</td>
<td>Experimentelle Studie ohne Randomisierung</td>
</tr>
<tr>
<td>IIb</td>
<td>Beobachtungsstudie mit Kontrollgruppe: Kohortenstudie</td>
</tr>
<tr>
<td>IIc</td>
<td>Beobachtungsstudie mit Kontrollgruppe: Fallkontrollstudie</td>
</tr>
<tr>
<td>III</td>
<td>Beobachtungsstudien ohne Vergleichsgruppe: Querschnittsstudien, Vorher-Nachher-Studien und Fallserien</td>
</tr>
<tr>
<td>IV</td>
<td>Einzelfallberichte, pathophysiologische Studien, Meinungen anerkannter Experten, Konsensuskonferenzen</td>
</tr>
</tbody>
</table>

Bei den extrahierten Daten aus randomisierten klinischen Studien werden für die klinischen Ergebnisparameter (Mortalität, Myokardinfarkt, MACE) und gegebenenfalls auch für intermediäre Parameter Metaanalysen durchgeführt, soweit diese Parameter zwischen den Studien vergleichbar sind. Hierfür wird eine Prüfung der statistischen Homogenität mit dem I²-Test durchgeführt und ein aufgrund des Ergebnisses geeignet erscheinendes Metaanalyseverfahren („fixed effects“- bzw. „random effects“-Modell) zur Effektschätzung der Endpunkte ausgewählt. Bei binären Variablen wird neben dem relativen Risiko als Effektschätzer auch der Anteil der durch die Behandlung verhinderten Fälle (1-RR) angegeben. „Funnelplots“ werden zur Überprüfung potenzieller Verzerrungen beispielsweise durch „publication bias“ angefertigt. Für die Metaanalyse und die Testverfahren wird die Software der Cochrane Collaboration Review Manager 4.2 verwendet.

Eine qualitative Informationssynthese für Daten aus Beobachtungsstudien wird analog der Extraktionsstruktur zu den RCT jedoch in Form tabellarischer Übersichten ohne „Poolen“ der Effektschätzer erstellt.

Sekundärpublikationen (HTA-Berichte, Leitlinien, Metaanalysen und systematische Reviews) werden in strukturierter Berichtsform (Fragestellung, Methodik, Ergebnisse, Schlussfolgerungen und Empfehlungen) dargestellt.

4.3.2 Ergebnisse

4.3.2.1 Ergebnis der systematischen Literaturrecherche und Selektion der Literaturstellen

Tabelle 6: Aus der Literatursynthese ausgeschlossene Studien mit Ausschlussgründen.

<table>
<thead>
<tr>
<th>Ausschlussgrund</th>
<th>Referenznummer</th>
<th>Anzahl</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thematisch relevante Literaturstelle ohne eigene Ergebnisse oder Hintergrundliteratur</td>
<td>76-189</td>
<td>113</td>
</tr>
<tr>
<td>Primärstudie, Zielgröße erfüllt Einschlusskriterien nicht</td>
<td>190-193</td>
<td>4</td>
</tr>
<tr>
<td>Primärstudie, Studienpopulation erfüllt Einschlusskriterien nicht</td>
<td>194-201</td>
<td>9</td>
</tr>
<tr>
<td>Primärstudie, Intervention erfüllt Einschlusskriterien nicht</td>
<td>202-226</td>
<td>25</td>
</tr>
<tr>
<td>Primärstudie, Studiendesign erfüllt Einschlusskriterien nicht</td>
<td>227-252</td>
<td>26</td>
</tr>
<tr>
<td>Tier- oder Phantomstudie</td>
<td>253-254</td>
<td>2</td>
</tr>
<tr>
<td>Nur als „Abstract“ publiziert</td>
<td>255-266</td>
<td>12</td>
</tr>
<tr>
<td>Doppelt</td>
<td>267-268</td>
<td>2</td>
</tr>
<tr>
<td>Nicht beschaffbar</td>
<td>269-277</td>
<td>9</td>
</tr>
<tr>
<td>Gesamt</td>
<td></td>
<td>202</td>
</tr>
</tbody>
</table>

Tabelle 7: Studientypen der eingeschlossene Literaturstellen geordnet nach Evidenzniveau.

<table>
<thead>
<tr>
<th>Evidenzniveau</th>
<th>Studententyp</th>
<th>Referenznummer</th>
<th>Anzahl</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Randomisierte kontrollierte Studie</td>
<td>55, 65, 71</td>
<td>3</td>
</tr>
<tr>
<td>IIa</td>
<td>Experimentelle Studie ohne Randomisierung</td>
<td>56-60, 62-64, 66-70, 72-74</td>
<td>16</td>
</tr>
<tr>
<td>IIb</td>
<td>Beobachtungsstudie mit Kontrollgruppe: Kohortenstudie</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>IIc</td>
<td>Beobachtungsstudie mit Kontrollgruppe: Fallkontrollstudie</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Ohne</td>
<td>Assoziierte Publikationen</td>
<td>61, 75</td>
<td>2</td>
</tr>
<tr>
<td>Gesamt</td>
<td></td>
<td></td>
<td>21</td>
</tr>
</tbody>
</table>

4.3.2.2 Beschreibung und Informationssynthese der eingeschlossenen Studien

4.3.2.2.1 Studien zur oralen Supplementation und Infusion mit antioxidativen Vitaminen

Tabelle 8 gibt eine Übersicht über die acht eingeschlossenen Studien zur oralen Supplementation von antioxidativen Vitaminen. Die Datenextraktionstabellen zu den einzelnen Studien sind im Anhang in alphabetischer Reihenfolge der Erstautoren zu finden.

Tabelle 8: In die Informationssynthese eingeschlossene Studien zur oralen Supplementation mit antioxidativen Vitaminen.

<table>
<thead>
<tr>
<th>Erstautor, Jahr und Titel der Publikation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chao et al. 2002, Vitamin C and E supplements improve the impaired antioxidant status and decrease plasma lipid peroxides in hemodialysis patients</td>
</tr>
<tr>
<td>Eiselt et al. 2001, Effects of a vitamin E-modified dialysis membrane and vitamin C infusion on oxidative stress in hemodialysis patients.</td>
</tr>
<tr>
<td>Khajehdehi 2000: Effect of vitamins on the lipid profile of patients on regular hemodialysis.</td>
</tr>
<tr>
<td>Mit Mann et al. 2004 assoziierte Publikationen:</td>
</tr>
<tr>
<td>Yusuf et al. 1996, The HOPE (Heart Outcomes Prevention Evaluation) Study: the design of a large, simple randomized trial of an angiotensin converting enzyme inhibitor (ramipril) and vitamin E in patients at high risk of cardiovascular events.</td>
</tr>
<tr>
<td>Roob et al. 2000, Vitamin E attenuates oxidative stress induced by intravenous iron in patients on hemodialysis.</td>
</tr>
<tr>
<td>Tarng et al. 2004, Protective effect of vitamin C on 8-hydroxy-2′-deoxyguanosine level in peripheral blood lymphocytes of chronic hemodialysis patients.</td>
</tr>
<tr>
<td>Williams et al. 2001, Vitamin C improves endothelial dysfunction in renal allograft recipients.</td>
</tr>
</tbody>
</table>

4.3.2.2.1.1 Studiencharakteristika

Eine Übersicht über Studiendesign, Patientencharakteristika und Ergebnisse der Studien wurde in den Tabellen 9 bis 22 zusammengestellt. Tabelle 9 gibt einen Überblick über die Zielgrößen für die Studien mit oraler antioxidativer Vitamin-supplementation.

In Tabelle 10 und Tabelle 11 ist das Studiendesign für die Studien zur Vitaminsupplementation mit klinischen Zielgrößen dargestellt, in Tabelle 13 und Tabelle 14 das Studiendesign für Studien mit Zielgrößen zu Gefäßveränderungen, in Tabelle 15 das Studiendesign für die Studien mit Zielgrößen zum oxidativen Stress.

In Tabelle 16 finden sich die Patientencharakteristika für die Studien zur Vitaminsupplementation mit klinischen Zielgrößen, in Tabelle 18 die Patientencharakteristika für Studien mit Zielgrößen zu...
Antioxidative Vitamine zur Prävention kardiovaskulärer Erkrankungen nach Nierentransplantation und bei chronischer Niereninsuffizienz

Gefäßveränderungen, in Tabelle 20 die Patientencharakteristika für Studien mit Zielgrößen oxidativer Stress.

In Tabelle 17 sind Intervention, Begleitmedikation und Zielgrößen für die Studien zur Vitaminsupplementation mit klinischen Zielgrößen beschrieben, in Tabelle 19 die Intervention, Begleitmedikation und Zielgrößen für Studien mit Zielgrößen zu Gefäßveränderungen, in Tabelle 21 die Intervention, Begleitmedikation und Zielgrößen für Studien mit Zielgrößen zum oxidativen Stress.

Tabelle 22 zeigt die Ergebnisse für die Studien zur Vitaminsupplementation mit klinischen Zielgrößen, Tabelle 23 die Ergebnisse für Studien mit Zielgrößen zu Gefäßveränderungen, Tabelle 24 die Ergebnisse für Studien mit Zielgrößen zum oxidativen Stress.

4.3.2.1.1 Fragestellung, Zielgrößen und Studienpopulation

Tabelle 9: Übersicht über die Zielgrößen der Studien zur oralen Supplementation mit antioxidativen Vitaminen.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Klinische Zielgrößen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Myokardinfarkt, Schlaganfall, PAV</td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bestimmung der klassischen Risikofaktoren für die Entstehung der Atherosklerose</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cholesterin</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eigenschaften der Blutzellen¹</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gerinnungsfaktoren²</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lipoproteine³</td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Triglyceride</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Messung ihrer Progression</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gefäß Eigenschaften⁴</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Marker für oxidativen Stress</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DNA-Schädigung⁵</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Entzündungsparameter⁶</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enzymatische Antioxidantien⁷</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Genexpression von Enzymen⁸</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nichteenzymatische Antioxidantien⁹</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oxidierbarkeit von Lipiden¹⁰</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oxidierte Lipide¹¹</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oxidierte Lipoproteine¹²</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ROS¹³</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Totaler antioxidativer Status</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
</tbody>
</table>

DNA = Deoxyribonucleic Acid, HDL = High Density Lipoprotein, LDL = Low Density Lipoprotein, NO = Stickstoffmonoxid, PAV = Periphere arterielle Verschlusskrankheit, ROM = Reactive Oxygen Metabolites, ROS = Reaktive Sauerstoffspezies.

4.3.2.1.1.2 Allgemeine Angaben

4.3.2.1.1.3 Studiendesign

Tabelle 10: In die Informationssynthese eingeschlossene Studien zur Vitaminsupplementation mit klinischen Zielgrößen: Studiendesign I.

<table>
<thead>
<tr>
<th>Quelle</th>
<th>Land (Zentrenanzahl) / Rekrutierungszeitraum</th>
<th>Studentyp</th>
<th>EN</th>
<th>Verblindung</th>
<th>Concealment</th>
<th>Follow-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPACE</td>
<td>Tel Aviv, Israel (5) Nov. / 1997 bis Jan. / 1999</td>
<td>RCT</td>
<td>I</td>
<td>Ärzte und Patienten</td>
<td>Ungenaue Angabe</td>
<td>519 Tage (Median), 10 bis 753 Tage (Spannweite)</td>
</tr>
<tr>
<td>Boaz 2000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HOPE</td>
<td>n. r. (267) / 1993 bis Dez. 1995</td>
<td>RCT mit 2 x 2-faktoriellem Design</td>
<td>I</td>
<td>Ärzte und Patienten</td>
<td>Ja</td>
<td>4,5 Jahre (MW)</td>
</tr>
<tr>
<td>Mann 2004</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EN: Evidenzniveau. MW = Mittelwert. n.r. = nicht relevant. RCT = Randomisierte kontrollierte Studie.
Tabelle 11: In die Informationssynthese eingeschlossene Studien zur Vitaminsupplementation mit klinischen Zielgrößen: Studiendesign II.

<table>
<thead>
<tr>
<th>Quelle</th>
<th>Anzahl eingeschlossener P (eligible P)</th>
<th>Gruppen (Anzahl der P / Gruppe)</th>
<th>Population</th>
<th>Ein- / Ausschlusskriterien</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPACE Boaz 2000</td>
<td>196 (243)</td>
<td>1 IG (98) 1 PG (98)</td>
<td>HD mit CVD</td>
<td>E: Hämodialysealter ≥ drei Monate, Dialysezeit ≥ zwölf h/Woche Alter: 40 bis 75 Jahre, KV-Vorerkrankung A: Antikoagulantieneinnahme, Krebserkrankung, Lebererkrankung, Einnahme von hypolipämischen Medikamenten</td>
</tr>
<tr>
<td>HOPE Mann 2004</td>
<td>193 (k.A.)</td>
<td>1 IG (499) 1 PG (494)</td>
<td>Niereninsuffiziente Stadium 13 mit CVD</td>
<td>E: Serum-Kreatinin-Werte: 1,4 bis 2,3 mg/dl, ≥ 55 Jahre, CVD, Diabetiker mit Risikofaktor für CVD A: P mit Proteinurie, Serum-Kreatinin-Wert > 2,3 mg/dl, P mit manifester Herzinsuffizienz und eingeschränkter Linksventrikelfunktion, Hyperkalemie, unkontrollierter Bluthochdruck, zeitnahe KV-Ereignisse</td>
</tr>
</tbody>
</table>

Tabelle 12: In die Informationssynthese eingeschlossene Studien zur Vitaminsupplementation mit Zielgrößen zu Gefäßveränderungen: Studiendesign I.

<table>
<thead>
<tr>
<th>Quelle</th>
<th>Land (Zentrenanzahl) / Rekrutierungszeitraum</th>
<th>Studientyp</th>
<th>EN Verblindung</th>
<th>Concealment</th>
<th>Follow-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Khajehdehi 2000</td>
<td>Skandinavien (k. A.) / k. A.</td>
<td>RCT</td>
<td>Ila</td>
<td>k. A.</td>
<td>k. A.</td>
</tr>
<tr>
<td>Williams 2001</td>
<td>Neuseeland (k. A.) / k. A.</td>
<td>RCT, „Cross-Over“-Design</td>
<td>Ila</td>
<td>Ärzte und Patienten</td>
<td>k. A.</td>
</tr>
</tbody>
</table>

Tabelle 13: In die Informationssynthese eingeschlossene Studien zur Vitaminsupplementation mit Zielgrößen zu Gefäßveränderungen und Risikofaktoren: Studiendesign II.

<table>
<thead>
<tr>
<th>Quelle</th>
<th>Anzahl eingeschlossener P (eligible P)</th>
<th>Gruppen (Anzahl der P / Gruppe)</th>
<th>Population / CVD-Status</th>
<th>Ein- / Ausschlusskriterien</th>
</tr>
</thead>
<tbody>
<tr>
<td>Khajehdehi 2000</td>
<td>65 (k. A.)</td>
<td>3 IG (15; 21; 15) 1 KG (14)</td>
<td>HD P</td>
<td>K. A. (HD P, die nicht mit Vitaminen oder Lipidsenkern behandelt worden waren)</td>
</tr>
</tbody>
</table>

Tabelle 14: In die Informationssynthese eingeschlossene Studien zur Vitaminsupplementation und oxidativem Stress: Studiendesign I.

<table>
<thead>
<tr>
<th>Quelle</th>
<th>Land (Zentrenanzahl) / Rekrutierungszeitraum</th>
<th>Studientyp</th>
<th>EN</th>
<th>Verblindung</th>
<th>Concealment</th>
<th>Follow-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chao 2002</td>
<td>Taiwan (1) / K. A.</td>
<td>Nicht-randomisierte Placebokontrollierte, prospektive Interventionsstudie</td>
<td>IIA</td>
<td>Ärzte und Patienten</td>
<td>K. A.</td>
<td>Zehn Wo (davon sechs Wo Intervention)</td>
</tr>
<tr>
<td>Tang 2004</td>
<td>Taiwan (2) / K. A.</td>
<td>RCT</td>
<td>I</td>
<td>Patienten</td>
<td>Verdeckt</td>
<td>Acht Wo</td>
</tr>
</tbody>
</table>

Tabelle 15: In die Informationssynthese eingeschlossene Studien zur Vitaminsupplementation und oxidativem Stress: Studiendesign II.

<table>
<thead>
<tr>
<th>Quelle</th>
<th>Anzahl eingeschlossener P (eligible P)</th>
<th>Gruppen (Anzahl der P / Gruppe)</th>
<th>Population, CVD-Status</th>
<th>Ein- / Ausschlusskriterien</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roob 2000</td>
<td>22 (K. A.)</td>
<td>1 IG (22) = 1 KG (22)</td>
<td>HD P, k. A.</td>
<td>E: Serumferritin Konzentrationen von < 100 µg/l und / oder TSAT 20 % mindestens einen Mo vor dem Start der Studie A: K. A.</td>
</tr>
</tbody>
</table>

4.3.2.2.1.1.4 Intervention

4.3.2.2.1.1.5 Begleitmedikation

4.3.2.2.1.1.6 Patientencharakteristika
Tabelle 16: In die Informationssynthese eingeschlossene Studien zur Vitaminsupplementation mit klinischen Zielgrößen: Patientencharakteristika.

<table>
<thead>
<tr>
<th>Quelle</th>
<th>Geschlecht / Alter in Jahren (MW ± SD) oder (Spannweite)</th>
<th>Gemessene Patientenparameter IG / KG (MW oder Spannweite) bzw. GG (MW oder Spannweite)</th>
<th>HD-alter (MW ± SD in Mo) oder (Spannweite)</th>
<th>Diagnosen der Niereninsuffizienz (N IG/N KG) bzw. (GG)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boaz 2000</td>
<td>Placebo: 30 % F / 64,9 ± 8,3 Intervention 31 % F 64,4 ± 8,8</td>
<td>Bluthochdruck (N) 41 / 48, Diabetes (N) 42 / 42, Rauchstatus (N) 24 / 14, Vit E (mg/dl) 1,06 / 1,09 Hämoglobin (g/dl) 11,9 / 11,4 MDA (nmol/ml) 2,8 / 2,8, Parathormon (µg/ml) 258,4 / 246,0 Cholesterin (mg/dl) 180,2 / 178,0</td>
<td>3,6 / 2,9</td>
<td>Glomerulonephritis (34 / 33), diabetische Nephrologie (33 / 35), Infektion (7 / 3), angeboren (7 / 10), polyzystische Nierenerkrankung (4 / 8), unklare Diagnose (12 / 9)</td>
</tr>
<tr>
<td>Mann 2004</td>
<td>Placebo: 13,8 % F / 68,0 ± 13,8 Intervention 11,6 % F 68,6 ± 6,8</td>
<td>Bluthochdruck (N) 272 / 278 Diabetes (N)154 / 180 Hypercholesterinämie (N) 316 / 323 Rauchgewohnheit (N) 57 / 47 BMI (kg/m²) 27,5 / 27,7 Herzfrequenz (beats/min) 66,5 / 67,0 Blutdruck (mmHG) sys. 140,1 / 140,6; dia. 78,7 / 78,9 Kreatinin (µmol/l) 138,7 / 138,8</td>
<td>n. r.</td>
<td>Keine Angabe</td>
</tr>
</tbody>
</table>

BMI = Body Mass Index, dia = Diastolisch, F = Frauen, GG = Gesamte Studienpopulation, HD = Hämodilayse, IG = Interventionsgruppe, KG = Kontrollgruppe, Kt / V = Dialysequantifizierungindex, MDA = Malondialdehyd, Mo = Monat, MW = Mittelwert, n. r. = Nicht relevant, N = Anzahl der eingeschlossenen Patienten, SD = Standardabweichung, Vit = Vitamin.

Tabelle 17: In die Informationssynthese eingeschlossene Studien zur Vitaminsupplementation mit klinischen Zielgrößen: Intervention, Begleitmedikation und Zielgrößen.

<table>
<thead>
<tr>
<th>Quelle</th>
<th>Intervention</th>
<th>Komedikation (N Intervention / N Placebo)</th>
<th>Zielgrößen</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPACE</td>
<td>Vit E, oral 800 IU/Tag oder Placebo</td>
<td>Erythropoetin (80 / 78) Kalziumkanalblocker (43 / 58) Aspirin (40 / 41) Furosemid (27 / 17) Betablocker (22 / 19) Lipidsenker (14 / 11) ACE-Hemmer (14 / 21)</td>
<td>Primäre Zielgröße: kombinierte Ereignisrate aus akutem Myokardinfarkt (tödlich oder nicht-tödlich), Schlaganfall, peripherer vaskulärer Erkrankung und instabiler Angina Sekundäre Zielgrößen: akuter Myokardinfarkt (tödlich oder nicht-tödlich), kardiovaskuläre Mortalität, Gesamt mortalität, Schlaganfall, periphere vaskuläre Erkrankung und instabile Angina</td>
</tr>
<tr>
<td>Boaz 2000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mann 2004</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ACE = Angiotensin Converting Enzym, IU = International Units, N = Anzahl der eingeschlossenen Patienten, Vit = Vitamin.
Tabelle 18: In die Informationssynthese eingeschlossene Studien zur Vitaminsupplementation mit Zielgrößen zu Gefäßveränderungen: Patientencharakteristika.

<table>
<thead>
<tr>
<th>Quelle</th>
<th>Geschlecht / Alter in Jahren (MW + SD) od. (Spannweite)</th>
<th>Gemessene Patientenparameter IG / KG (MW od. Spannweite) bzw. GG (MW od. Spannweite)</th>
<th>HD-alter (MW ± SD in Mo) od. (Spannweite)</th>
<th>Diagnosen der Niereninsuffizienz (N IG/ N KG) bzw. (GG)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Khajehdehi 2000</td>
<td>48,8 % F / 31,4 (Median)</td>
<td>Bluthochdruck (N 45)</td>
<td>K. A. (> 3)</td>
<td>Glomerulonephritis od. Pyelonephritis (54 %) Diabetes (17 %) obstruktive Uropathie (13 %) polyzys. Nierenerkr. (7 %)</td>
</tr>
<tr>
<td>Williams 2001</td>
<td>30,8 % F / 62 ±1 2</td>
<td>Vit C (µmol/l): 33,5 / 36,9 Cholesterin (mmol/l) 6,22 / 6,12 Serum lag time (min): 65 / 68 LDL (mmol/l): 3,71 / 3,75 HDL (mmol/l): 1,26 / 1,27 Triglyceride (mmol/l): 2,74 / 2,44 BMI (kg/m²) 27,7 ± 3,3</td>
<td>78 ± 59 Post-transpl.</td>
<td>K. A.</td>
</tr>
</tbody>
</table>

Tabelle 19: In die Informationssynthese eingeschlossene zur Vitaminsupplementation mit Zielgrößen zu Gefäßveränderungen: Intervention, Begleitmedikation und Zielgrößen.

<table>
<thead>
<tr>
<th>Quelle</th>
<th>Intervention</th>
<th>Begleitmedikation (N Intervention / N Placebo) bzw. (alle P)</th>
<th>Zielgrößen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Khajehdehi 2000</td>
<td>Vit C: 200 mg/Tag Vit E: 200 mg/Tag Vit D: 50000 IU/Tag vs. Placebo</td>
<td>Kalziumkanalblocker (K. A.)</td>
<td>Prim.: Keine Fallzahlplanung Sek.: Triglyceride, Cholesterin, LDL-c, HDL-c, Verhältnis von Triglyceride / HDL-c, LDL-c / HDL-c, Cholesterin / HDL-c</td>
</tr>
<tr>
<td>Williams 2001</td>
<td>Vit C oral (2 g/Tag) vs. Placebo</td>
<td>Immunsuppressiva (12) ACE-Hemmer (10) Zyklische Diuretika (1) Kalziumantagonisten (8) Betablocker (3) Statine (4)</td>
<td>Prim.: Endothelabhängige, nitroglycerininduzierte, endothel-unabhängigen Vasodilatation in der Brachialarterie Sek.: Cholesterin, Lag Time der Lipoproteinoxidation, LDL, HDL, Herzfrequenz, Gefäßgröße, Blutfluss zu Beginn und nach induzierter Ischämie</td>
</tr>
</tbody>
</table>

Tabelle 20: In die Informationssynthese eingeschlossene Studien zur Vitaminsupplementation und oxidativem Stress: Patientencharakteristika.

<table>
<thead>
<tr>
<th>Quelle</th>
<th>Geschlecht / Alter in Jahren (MW + SD) od. (Spannweite)</th>
<th>Gemessene Patientenparameter IG / KG (MW od. Spannweite) bzw. GG (MW od. Spannweite)</th>
<th>HD-alter (MW ± SD in Mo) od. (Spannweite)</th>
<th>Diagnosen der Niereninsuffizienz (N IG/N KG) bzw. (GG)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chao 2002</td>
<td>30 % F/ 57 ± 14 (Vit C) 30 % F/ 62 ± 8 (Vit E) 30 % F/ 58 ± 17 (Vit C + E) 25 % F/ 66 ± 12 (KG)</td>
<td>Je Vit C / Vit E / Vit C + E / KG: Diabetes (N) 2 / 3 / 2 / 3 Erythropoetintherapie (N) 10 / 7 / 6 / 7 BMI (kg/m²) 19,7 / 22,9 / 23,8 / 23,6 Plasma Albumin (g/l) 37 / 39 / 37 / 37 Cholesterin (mmol/l) 2,41 / 3,96 / 4,20 / 3,54 Triglyceride (mmol/l) 2,13 / 3,02 / 2,69 / 2,47 ausführliche Dokumentation der Nahrungsaufnahme</td>
<td>61 ± 77 (Vit C) 57 ± 67 (Vit E) 57 ± 78 (Vit C + E) 61 ± 55 (KG)</td>
<td>K.A.</td>
</tr>
<tr>
<td>Eiselt 2001</td>
<td>K-Studie: 41,7 % F / 66 ± k. A. L-Studie: 50 % F / 64 ± K. A.</td>
<td>Anurie (N) k7 / l6 Harn u. Kreatintin Clearance (ml/s) k 0,07 / l0,04 Hb (g/l) k105 / l107</td>
<td>41 (8 bis 153)</td>
<td>Pyelonephritis (k10 / l12) Diabetes (k9 / l3) Polyzyst. Nierenerkr. (k3 / l2) Glomerulonephritis (k1 / l2) Alports Syndrom (k1 / l0) Nephrosklerose (k0 / l1) (Je K- / L-Studie)</td>
</tr>
<tr>
<td>Roob 2000</td>
<td>50 % F/ 56,6 ± 14,6</td>
<td>Ultrafiltration (l / Sitzung) 2,05 Blutfluss (ml/min) 259 Kreatinin (mg/dl) 10,2 Harnstoff (mg/dl) 67,8 Harnsäure (mg/dl) 7,31</td>
<td>49,2 ± 4,8</td>
<td>K. A.</td>
</tr>
</tbody>
</table>

Tabelle 21: In die Informationssynthese eingeschlossene Studien zur Vitaminsupplementation und oxidativem Stress: Intervention, Begleitmedikation und Zielgrößen.

<table>
<thead>
<tr>
<th>Quelle</th>
<th>Intervention</th>
<th>Komedikation (N Intervention/ N Placebo)</th>
<th>Zielgrößen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chao 2002</td>
<td>Vit C 400 mg od. Vit E 400 mg od. Vit C+E je 400 mg Od. Placebo 400 mg</td>
<td>K. A.</td>
<td>Prim.: Keine Fallzahlplanung Sek.: Vit C, Vit E, antioxidativer Gesamtstatus, Lipidperoxide (MDA und 4-HNE) im Blutplasma, reduziertes Glutathion in Erythrozyten</td>
</tr>
<tr>
<td>Eiselt 2001</td>
<td>Kurzzst: CLE mit od. ohne Vit C-Inf. 504 mg / Dialyse oder kVM mit od. ohne Vit C-Inf. 504 mg / Dialyse Langzst: zeitl. Abfolge von CLE, kVM, CLE</td>
<td>Erythropoetin: Kurzzst: 3000 U/Wo/ Langzst: 2400 U/Wo Vit C: Kurzzst: 50 mg/T Langst: 45 mg/T (jeweils GG)</td>
<td>Prim.: Keine Fallzahlplanung Sek.: Vit C-Konzentration, TBARS, AOC, Konzentrationen von Glutathion, Superoxid Dismutase und Glutathion Peroxidase</td>
</tr>
</tbody>
</table>
Antioxidative Vitamine zur Prävention kardiovaskulärer Erkrankungen nach Nierentransplantation und bei chronischer Niereninsuffizienz

Fortsetzung Tabelle 21: In die Informationssynthese eingeschlossene Studien zur Vitaminsupplementation und oxidativem Stress: Intervention, Begleitmedikation und Zielgrößen.

<table>
<thead>
<tr>
<th>Quelle</th>
<th>Intervention</th>
<th>Komedikation (N Intervention/ N Placebo)</th>
<th>Zielgrößen</th>
</tr>
</thead>
</table>
| Roob | Studie A: oral Vit E 1200 IU 6h vor Dialyse + Eiseninfusion vs. kein Vit E vor Dialyse + Eiseninfusion
Studie B: oral Vit E 1200 IU 6h vor Dialyse vs. kein Vit E vor Dialyse | Erythropoetin (IU/Wo) 10,136 | Prim.: Keine Fallzahlplanung
Sek.: AUC (von 0 bis 180 min) der Raten MDA / Cholesterin und Gesamtperoxid / Cholesterin, Plasma-Vit E / Cholesterin, Plasma MDA, freies Eisen |
| Tarng | Intrav. VitC 300 mg 3 x/Wo vs. Intrav. NaCl-Lsg. 3 x/Wo | K. A. | Prim.: Keine Fallzahlplanung
Sek.: 8-OHdG-Level, intrazelluläre Produktion von ROS u. Genexpression v. hOGG1 u. hMTH1 in peripheren Lymphozyten |

4.3.2.2.1.2 Studienqualität

4.3.2.2.1.2.1 Auswahl der Studienteilnehmer

4.3.2.2.1.2.2 Zuordnung und Studienteilnahme

Sieben der Studien wurden von den Autoren als randomisierte placebokontrollierte Studien bezeichnet. Abgesehen von den Studien von Boaz et al. (2000) und Mann et al. (2004), die das Randomisierungsverfahren beschrieben haben (computergenerierter Münzwurf durch Person, die...

4.3.2.2.1.2.3 Intervention und Studienadministration

4.3.2.2.1.2.4 Outcomemessung
oxidativen Stress erhöht ist (Eiselt et al. 2001) und die DNA-Schädigung durch die erfassbare Modifizierung der Guaninbase (Tarng et al. 2004). Die Studien, die einen oxidativen Stressmarker erfasst haben, bedienten sich dabei größtenteils der gängigen Marker. Eine zusammenfassende Darstellung der Messmethoden für Biomarker zu allen eingeschlossenen Studien erfolgt unter dem Punkt 4.3.2.2.2.2.4 „Outcomemessung“ der Studien mit Vitamin E-beschichteten Hämodialyse-membranen.

4.3.2.2.1.2.5 Dropouts

4.3.2.2.1.2.6 Statistische Analyse
4.3.2.2.1.3 Ergebnisse zum Einfluss von antioxidativen Vitaminen auf klinische Zielgrößen

Die SPACE-Studie (Boaz et al. 2000) konnten bei Hämodialysepatienten einen protektiven Effekt des oral verabreichten Vitamin E von 800 IU pro Tag auf die kombinierte Ereignisrate in der Interventions- im Vergleich zur Kontrollgruppe feststellen. Inklusive der plötzlichen Todesfälle ergab sich ein relatives Risiko von 0,54 (95 % KI 0,33-0,89), p = 0,016 und ohne plötzliche Todesfälle ergab sich ein relatives Risiko von 0,46 (95 % KI 0,27-0,78) p = 0,014. Auch auf die Häufigkeit von Myokardinfarkten (tödlich und nicht-tödlich) konnte eine Wirkung des Vitamins nachgewiesen werden. Inklusive der plötzlichen Todesfälle ergab sich ein relatives Risiko von 0,45 (95 % KI 0,27-0,78), p = 0,04 und ohne plötzliche Todesfälle ergab sich ein relatives Risiko von 0,30 (95 % KI 0,10-0,80) p = 0,016; allerdings ist dieser Effekt nach Adjustierung auf aktuelle Rauchgewohnheiten in einem Coxregressionsmodell nicht mehr als statistisch signifikant nachzuweisen: RR: 0,36 (95 %-KI: 0,12-1,08 p = 0,1). Andere sekundäre Zielgrößen wie tödlicher Myokardinfarkt, Schlaganfall, periphere vaskuläre Erkrankungen und instabile Angina pectoris wiesen zwar ein niedrigeres relatives Risiko im Vitamin E-Arm auf. Diese Unterschiede waren jedoch nicht statistisch signifikant (siehe Tabelle 22). Im Unterschied dazu konnte die HOPE-Studie (Mann et al. 2004) weder für die primäre Zielgröße noch für die sekundären Zielgrößen bei Patienten mit gering- bis mittelgradiger Niereninsuffizienz einen statistisch signifikanten Unterschied zwischen den Gruppen nachweisen (Tabelle 22). Die relativen Risiken waren zumeist nahe 1. Auch eine Überlebenszeitanalyse mit der Kaplan-Meier-Methode zeigte keine signifikanten Unterschiede zwischen den Behandlungsgruppen.

<table>
<thead>
<tr>
<th>Quelle</th>
<th>Ergebnisse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boaz 2000</td>
<td>IG N (%) KG N (%) RR (95% KI) p</td>
</tr>
<tr>
<td></td>
<td>Kombinierte Ereignisrate aus tödlichen und nicht-tödlichen MI, Schlaganfall, peripherer vaskulärer Erkrankung, instabiler Angina</td>
</tr>
<tr>
<td></td>
<td>Plötzl. Todesfälle eingeschl. 18 (18,6) 34 (34,3) 0,54 (0,33-0,89) 0,016</td>
</tr>
<tr>
<td></td>
<td>Plötzl. Todesfälle ausgeschl. 15 (15,5) 33 (33,3) 0,46 (0,27-0,78) 0,014</td>
</tr>
<tr>
<td></td>
<td>Sekundäre Zielgrößen</td>
</tr>
<tr>
<td></td>
<td>MI</td>
</tr>
<tr>
<td></td>
<td>Plötzl. Todesfälle eingeschl. 8 (8,2) 18 (18,2) 0,45 (0,27-0,78) 0,04</td>
</tr>
<tr>
<td></td>
<td>Plötzl. Todesfälle ausgeschl. 5 (5,2) 17 (17,2) 0,30 (0,10-0,80) 0,016</td>
</tr>
<tr>
<td></td>
<td>Tödlt. MI, plötzl. Todesfälle eingeschlossenen 5 (5,2) 9 (9,1) 0,57 (0,20-1,60) 0,3</td>
</tr>
<tr>
<td></td>
<td>Tödlt. MI, plötzl. Todesfälle ausgeschlossen 5 (5,2) 8 (8,1) 0,26 (0,06-1,17) 0,1</td>
</tr>
<tr>
<td></td>
<td>Nicht-tödlich</td>
</tr>
<tr>
<td></td>
<td>Alle Ursachen 31 (31,2) 29 (29,3) 1,09 (0,70-1,70) 0,7</td>
</tr>
<tr>
<td></td>
<td>Kardiovask. Erkrankungen 9 (9,3) 15 (15,2) 0,61 (0,28-1,30) 0,25</td>
</tr>
<tr>
<td></td>
<td>Plötzlicher Tod 3 (3,1) 1 (1,1) 3,06 (0,30-29,00) 0,3</td>
</tr>
<tr>
<td></td>
<td>Schlaganfall 5 (5,2) 6 (6,1) 0,85 (0,30-2,70) 0,8</td>
</tr>
<tr>
<td></td>
<td>Periphere vaskuläre Erkr. 3 (3,1) 8 (8,1) 0,39 (0,11-1,43) 0,2</td>
</tr>
<tr>
<td></td>
<td>Instabile Angina pectoris 2 (2,1) 4 (4,1) 0,51 (0,09-2,70) 0,4</td>
</tr>
</tbody>
</table>
Fortsetzung Tabelle 22: In die Informationssynthese eingeschlossene Studien zur Vitaminsupplementation mit klinischen Zielgrößen: Ergebnisse

<table>
<thead>
<tr>
<th>Quelle</th>
<th>Ergebnisse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mann 2004</td>
<td>IG N (%)</td>
</tr>
<tr>
<td>Primäre Zielgröße</td>
<td></td>
</tr>
<tr>
<td>Kombinierte Ereignisrate aus MI, Schlaganfall, Tod aus kardiovask. Ursachen</td>
<td>115 (23,0)</td>
</tr>
<tr>
<td>Sekundäre Zielgrößen</td>
<td></td>
</tr>
<tr>
<td>MI</td>
<td>81 (16,2)</td>
</tr>
<tr>
<td>Schlaganfall.</td>
<td>26 (5,2)</td>
</tr>
<tr>
<td>Gesamtmortalität</td>
<td>85 (17,0)</td>
</tr>
<tr>
<td>Instabile Angina Pectoris</td>
<td>76 (15,2)</td>
</tr>
<tr>
<td>Hospitalisierung aufgrund von Herzversagen</td>
<td>31 (6,2)</td>
</tr>
<tr>
<td>Revaskularisation</td>
<td>107 (21,4)</td>
</tr>
<tr>
<td>Weitere Zielgrößen</td>
<td></td>
</tr>
<tr>
<td>Dekompensative Herzinsuffizienz</td>
<td>83 (16,6)</td>
</tr>
<tr>
<td>Transitorische ischämische Attacke</td>
<td>33 (6,6)</td>
</tr>
<tr>
<td>Instabile Angina pectoris mit EKG-Veränderungen</td>
<td>27 (5,4)</td>
</tr>
</tbody>
</table>

4.3.2.2.1.4 Ergebnisse zum Einfluss von antioxidativen Vitaminen auf intermediäre Zielgrößen

Im Anschluss werden die Ergebnisse zu intermediären Zielgrößen getrennt nach gefäßverändernden Parametern und Biomarkern für oxidativen Stress dargestellt.

4.3.2.2.1.5 Ergebnisse zum Einfluss von antioxidativen Vitaminen auf gefäßverändernde Zielgrößen

Bei Williams et al. (2001) wurde zu den Vergleichen zwischen der Interventions- und der Kontrollgruppe auch die statistische Unsicherheit mittels Hypothesentests geprüft. Unter Vitamin C-Gabe war ein signifikanter Anstieg der endothelabhängigen Vasodilatation im Vergleich zu Placebo zu verzeichnen. Auch die Varianzanalyse, die die Basisswerte der Gefäßgröße und des Blutflosses vor und nach der induzierten Ischämie zu Beginn der Studie berücksichtigte, zeigte signifikante Unterschiede. Die nitroglycerininduzierte endothelunabhängige Vasodilatation war nicht-signifikant unterschiedlich unter Placebo und unter Vitamin C-Gabe. Der Anstieg der Vitamin C-Konzentration im Plasma war signifikant mit der Verzögerungszeit (lagtime) der Lipidproteinoxidation im Serum korreliert (r = 0,60, p = 0,03)

<table>
<thead>
<tr>
<th>Quelle</th>
<th>Ergebnisse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Khajehdehi 2000</td>
<td>Basiswert Drei Mo Basiswert Drei Mo Basiswert Drei Mo Basiswert Drei Mo</td>
</tr>
<tr>
<td>TG*</td>
<td>5,79 ± 1,55 5,82 ± 2,22 5,66±0,91 5,83 ± 0,72 6,77 ± 1,00 6,55 ± 0,88</td>
</tr>
<tr>
<td>Chol*</td>
<td>5,07 ± 1,58 5,10 ± 1,53 6,23 ± 1,11 5,45 ± 1,06 6,54 ± 1,09 6,5 ± 1,19</td>
</tr>
<tr>
<td>LDL-c*</td>
<td>3,62 ± 1,13 3,44 ± 0,94 4,40 ± 1,01 3,71 ± 1,03 4,37 ± 1,17 4,59 ± 1,15</td>
</tr>
<tr>
<td>HDL-c*</td>
<td>0,81 ± 0,13 0,93 ± 0,09 0,92 ± 0,14 0,92 ± 0,12 0,97 ± 0,17 1,01 ± 0,18</td>
</tr>
<tr>
<td>TG / LDL-c</td>
<td>7,45 ± 8,91 6,79 ± 3,89 6,26 ± 1,39 5,90 ± 1,24 7,12 ± 1,46 7,71 ± 1,34</td>
</tr>
<tr>
<td>LDL-c / HDL-c</td>
<td>4,36 ± 1,20 3,81 ± 1,19 4,85 ± 1,29 4,11 ± 1,40 4,66 ± 1,63 4,74 ± 1,69</td>
</tr>
<tr>
<td>Chol / HDL-c</td>
<td>6,37 ± 1,01 5,63 ± 1,09 6,86 ± 1,50 6,03 ± 1,15 6,94 ± 1,75 6,60 ± 1,76</td>
</tr>
<tr>
<td>*(mmol/l)</td>
<td>*(p < 0,05 vs. Basiswert; ** < 0,05 IG Vit E vs. Placebo; *** p < 0,05 vs. Vit C</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Williams 2001</th>
<th>IG</th>
<th>KG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basiswert Zwei h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primäre Zielgröße</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EDD (%)</td>
<td>1,6 ± 2,6 4,5 ± 2,5 1,9 ± 1,5 1,8 ± 2,5 0,003</td>
<td></td>
</tr>
<tr>
<td>GTN (%)</td>
<td>10,5 ± 4,8 11,4 ± 6,6 9,9 ± 5,9 12,2 ± 5,2 0,46</td>
<td></td>
</tr>
<tr>
<td>Sekundäre Zielgrößen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vit C (µmol/l)</td>
<td>33,5 ± 17,0 98,8 ± 60,2 36,9 ± 20,4 35,2 ± 19,3 0,0001</td>
<td></td>
</tr>
<tr>
<td>"lag time" (min)</td>
<td>65 ± 16 100 ± 17 68 ± 15 68 ± 14 0,0001</td>
<td></td>
</tr>
<tr>
<td>Chol (mmol/l)</td>
<td>6,22 ± 1,48 6,17 ± 1,51 6,12 ± 1,38 6,14 ± 1,47 0,19</td>
<td></td>
</tr>
<tr>
<td>LDL-c (mmol/l)</td>
<td>3,71 ± 1,47 3,66 ± 1,46 3,75 ± 1,32 3,73 ± 1,39 0,37</td>
<td></td>
</tr>
<tr>
<td>HDL-c (mmol/l)</td>
<td>1,26 ± 0,33 1,24 ± 0,33 1,27 ± 0,29 1,28 ± 0,31 0,10</td>
<td></td>
</tr>
<tr>
<td>TG (mmol/l)</td>
<td>2,74 ± 1,41 2,78 ± 1,50 2,44 ± 1,22 2,49 ± 1,30 0,78</td>
<td></td>
</tr>
</tbody>
</table>

*p-Werte der Varianzanalyse für die Vergleiche der Messzeitpunkte

4.3.2.1.6 Ergebnisse zum Einfluss von antioxidativen Vitaminen auf Marker für oxidativen Stress

Ein Unterschied zwischen den Interventions- und der Kontrollgruppe ist anhand der Werte erkennbar, jedoch fehlen Angaben zur statistischen Unsicherheit.

Roob et al. (2000) konnte eine unterschiedliche Wirkung der Vitamin E-Supplementation bzw. des Placebos auf die Behandlungsgruppen nachweisen. Die Quotienten von MDA zu Cholesterin und die von Peroxiden zu Cholesterin sanken, wobei hierbei die Senkung der Reduzierung der reaktiven Sauerstoffmetaboliten die tragende Rolle spielt.
Tabelle 24: In die Informationssynthese eingeschlossene Studien zur Vitaminsupplementation und oxidativem Stress: Ergebnisse.

<table>
<thead>
<tr>
<th>Quelle</th>
<th>Parameter / Gruppen</th>
<th>Basiswert</th>
<th>Sechs Wo</th>
<th>Basiswert</th>
<th>Sechs Wo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chao 2002</td>
<td>Vit E (µmol/l) (%) der Veränderung vs. Basiswert</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IG Vit C</td>
<td>11,0 ± 3,8</td>
<td>12,3 ± 3,3</td>
<td>11,4 ± 3,6</td>
<td>11,8 ± 3,2</td>
<td></td>
</tr>
<tr>
<td>IG Vit E</td>
<td>11,3 ± 4,1</td>
<td>19,2 ± 4,1</td>
<td>9,9 ± 3,5</td>
<td>18,6 ± 3,4</td>
<td></td>
</tr>
<tr>
<td>IG Vit C + E</td>
<td>9,8 ± 3,3</td>
<td>17,0 ± 4,1</td>
<td>10,2 ± 4,0</td>
<td>7,6 ± 3,9</td>
<td></td>
</tr>
<tr>
<td>KG</td>
<td>12,0 ± 3,0</td>
<td>12,4 ± 3,3</td>
<td>11,4 ± 3,6</td>
<td>11,8 ± 3,2</td>
<td></td>
</tr>
<tr>
<td>Glutathion (µmol/l) (%) der Veränderung vs. Basiswert</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IG Vit C</td>
<td>231 ± 54</td>
<td>304 ± 41</td>
<td>210 ± 44</td>
<td>279 ± 37</td>
<td></td>
</tr>
<tr>
<td>IG Vit E</td>
<td>234 ± 36</td>
<td>310 ± 57</td>
<td>199 ± 38</td>
<td>271 ± 50</td>
<td></td>
</tr>
<tr>
<td>IG Vit C + E</td>
<td>210 ± 48</td>
<td>294 ± 56</td>
<td>184 ± 44</td>
<td>267 ± 51</td>
<td></td>
</tr>
<tr>
<td>KG</td>
<td>236 ± 39</td>
<td>249 ± 43</td>
<td>205 ± 36</td>
<td>213 ± 38</td>
<td></td>
</tr>
<tr>
<td>Gesamtantioxidativer Status (µmol/l) (%) der Veränderung vs. Basiswert</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IG Vit C</td>
<td>1,34 ± 0,09</td>
<td>1,62 ± 0,19</td>
<td>1,08 ± 0,10</td>
<td>1,33 ± 0,15</td>
<td></td>
</tr>
<tr>
<td>IG Vit E</td>
<td>1,26 ± 0,16</td>
<td>1,68 ± 0,15</td>
<td>1,17 ± 0,07</td>
<td>1,47 ± 0,18</td>
<td></td>
</tr>
<tr>
<td>IG Vit C + E</td>
<td>1,35 ± 0,11</td>
<td>1,80 ± 0,25</td>
<td>1,08 ± 0,14</td>
<td>1,48 ± 0,34</td>
<td></td>
</tr>
<tr>
<td>KG</td>
<td>1,40 ± 0,21</td>
<td>1,42 ± 0,18</td>
<td>1,10 ± 0,24</td>
<td>1,14 ± 0,10</td>
<td></td>
</tr>
<tr>
<td>MDA-4HNE (µmol/l) (%) der Veränderung vs. Basiswert</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IG Vit C</td>
<td>56,3 ± 20,0</td>
<td>40,0 ± 11,1</td>
<td>56,1 ± 19,7</td>
<td>41,6 ± 16,8</td>
<td></td>
</tr>
<tr>
<td>IG Vit E</td>
<td>43,5 ± 17,3</td>
<td>30,2 ± 12,4</td>
<td>44,7 ± 16,6</td>
<td>28,1 ± 11,7</td>
<td></td>
</tr>
<tr>
<td>IG Vit C + E</td>
<td>53,1 ± 28,4</td>
<td>28,0 ± 16,1</td>
<td>52,4 ± 26</td>
<td>29,4 ± 15,2</td>
<td></td>
</tr>
<tr>
<td>KG</td>
<td>37,7 ± 19,8</td>
<td>42,4 ± 22,2</td>
<td>38,4 ± 20,2</td>
<td>41,2 ± 23,7</td>
<td></td>
</tr>
</tbody>
</table>

*p < 0,05 vs. Basiswerten
* p < 0,05 vs. preHD nach sechs Wochen

Eiselt 2001

Kurzzeitstudie, Vergleich zwischen preHD und postHD

<table>
<thead>
<tr>
<th>Parameter / Gruppen</th>
<th>TBARS (µmol/l)</th>
<th>AOC (µmol/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>preHD</td>
<td>postHD</td>
</tr>
<tr>
<td>IG + Vit C</td>
<td>4,05 ± 0,16</td>
<td>4,06 ± 0,15</td>
</tr>
<tr>
<td>IG ohne Vit C</td>
<td>3,90 ± 0,15</td>
<td>4,09 ± 0,14</td>
</tr>
<tr>
<td>KG + Vit C</td>
<td>4,28 ± 0,15</td>
<td>4,18 ± 0,15</td>
</tr>
<tr>
<td>KG ohne Vit C</td>
<td>3,95 ± 0,11</td>
<td>4,26 ± 0,11</td>
</tr>
</tbody>
</table>

Langzeitstudie, zeitl. Abfolge der versch. Membranen

TBARS

<table>
<thead>
<tr>
<th>Gruppen</th>
<th>kVM (Mo 0 bis 4)</th>
<th>CLE (Mo 0 bis 4)</th>
<th>KVM (Mo 0 bis 4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ohne Vit C</td>
<td>Anstieg (n. s.)</td>
<td>Reduziert (s.)</td>
<td>Anstieg bis Ausgangswert (k. A.)</td>
</tr>
<tr>
<td>+ Vit C</td>
<td>Gleibleibende Werte (n. s.)</td>
<td>Reduziert (s.)</td>
<td>Nur leicht wieder erhöht (k. A.)</td>
</tr>
</tbody>
</table>
Antioxidative Vitamine zur Prävention kardiovaskulärer Erkrankungen nach Nierentransplantation und bei chronischer Niereninsuffizienz

Fortsetzung Tabelle 24: In die Informationssynthese eingeschlossene Studien zur Vitaminsupplementation und oxidativem Stress: Ergebnisse

<table>
<thead>
<tr>
<th>Quelle</th>
<th>MDA / Cholesterin</th>
<th>Ohne Vitamin E</th>
<th>Differenz</th>
<th>p-Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roob 2000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AUC (0-240 min)</td>
<td>66,8 ± 24,9</td>
<td>56,4 ± 19,2</td>
<td>-10,27 ± 14,79</td>
</tr>
<tr>
<td></td>
<td>(µmol/mmol) x Min. (MW ± SD)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MDA / Cholesterin</td>
<td>21,0 ± 10,1</td>
<td>17,8 ± 9,12</td>
<td>-3,18 ± 4,09</td>
</tr>
<tr>
<td></td>
<td>AUC (0-240 min)</td>
<td>(µmol/mmol) x Min. (MW ± SD)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Targ 2004</td>
<td>8-OHdG (10^6 dG)</td>
<td>ROS-Produktion (%)</td>
<td>hOGG1 mRNA Expression (10^6 dG)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Basiswert Letzter gem. Wert</td>
<td>Basiswert Letzter gem. Wert</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IG (GG)</td>
<td>22,9 ± 8,7</td>
<td>18,8 ± 8,3bc</td>
<td>35±33</td>
<td>7 ± 15bc</td>
</tr>
<tr>
<td>IG Ferritin < 500 µg/l</td>
<td>17,2 ± 6,0</td>
<td>14,6 ± 7,1bc</td>
<td>Red. vs. Basiswert</td>
<td></td>
</tr>
<tr>
<td>IG Ferritin ≥ 500 µg/l</td>
<td>29,1 ± 6,6</td>
<td>23,3 ± 7,3bc</td>
<td>Red. vs. Basiswert</td>
<td></td>
</tr>
<tr>
<td>IG TSAT < 50 %</td>
<td>21,6 ± 9,4</td>
<td>17,2 ± 8,8bc</td>
<td>K. A.</td>
<td></td>
</tr>
<tr>
<td>IG TSAT ≥ 50 %</td>
<td>23,8 ± 8,3</td>
<td>17,8 ± 8,1bc</td>
<td>K. A.</td>
<td></td>
</tr>
</tbody>
</table>

p < 0,01 vs. Basiswert, b p < 0,05 vs. Basiswert; c Vergleich der Placebo-Basiswerte mit Placebo-Endwerten: keine signifikanten Unterschiede (keine Werte angegeben)

4.3.2.2.2 Studien zur Supplementation mit antioxidativen Vitaminen durch Vitamin E-beschichtete Hämodialysemembranen

Tabelle 25 gibt eine Übersicht über die zwölf eingeschlossenen Studien zur Supplementation mit antioxidativen Vitaminen durch Vitamin E-beschichtete Hämodialysemembranen. Die Datenextraktionstabellen zu den einzelnen Studien sind im Anhang in alphabetischer Reihenfolge der Erstautoren zu finden.

Tabelle 25: In die Informationssynthese eingeschlossene Studien mit Vitamin-E-beschichteten Dialysemembranen.

<table>
<thead>
<tr>
<th>Erstautor, Jahr und Titel der Publikation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bufano et al. 2004, von Willebrand factor and autoantibodies against oxidized LDL in hemodialysis patients treated with vitamin E-modified dialyzers.</td>
</tr>
<tr>
<td>Calò et al. 2004, Vitamin E-coated dialyzers reduce oxidative stress related proteins and markers in hemodialysis - a molecular biological approach.</td>
</tr>
<tr>
<td>Clermont et al. 2001, Vitamin E-coated dialyzer reduces oxidative stress in hemodialysis patients.</td>
</tr>
<tr>
<td>Eiseilt et al. 2001, Effects of a vitamin E-modified dialysis membrane and vitamin C infusion on oxidative stress in hemodialysis patients.</td>
</tr>
<tr>
<td>Hara et al. 2004, Reduction of Oxidized Low-Density Lipoprotein by the Long Term Use of Vitamin E-Coated Dialyzers in Hemodialysis Patients.</td>
</tr>
<tr>
<td>Kobayashi et al. 2003, Vitamin E-bonded hemodialyzer improves atherosclerosis associated with a rheological improvement of circulating red blood cells.</td>
</tr>
<tr>
<td>Mune et al. 1999, Effect of vitamin E on lipid metabolism and atherosclerosis in ESRD patients.</td>
</tr>
</tbody>
</table>
Fortsetzung Tabelle 25: In die Informationssynthese eingeschlossene Studien mit Vitamin-E-beschichteten Dialysemembranen

<table>
<thead>
<tr>
<th>Erstautor, Jahr und Titel der Publikation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nakamura et al. 2003, Effects of LDL apheresis and vitamin E-modified membrane on carotid atherosclerosis in hemodialyzed patients with arteriosclerosis obliterans.</td>
</tr>
<tr>
<td>Pertosa et al. 2002, Vitamin E-modified filters modulate Jun N-terminal kinase activation in peripheral blood mononuclear cells.</td>
</tr>
<tr>
<td>Tarng et al. 2000, Effect of vitamin E-bonded membrane on the 8-hydroxy 2′-deoxyguanosine level in leukocyte DNA of hemodialysis patients.</td>
</tr>
<tr>
<td>Tsuruoka et al. 2002, Vitamin E-bonded hemodialyzer improves neutrophil function and oxidative stress in patients with end-stage renal failure.</td>
</tr>
<tr>
<td>Usberti et al. 2002, Effects of Erythropoetin and vitamin E-modified membrane on plasma oxidative stress markers and anemia of hemodialyzed patients.</td>
</tr>
</tbody>
</table>

4.3.2.2.2.1 Studiencharakteristika

Eine Übersicht über Zielgrößenerfassung, verwendete Dialysemembranen, Studiendesign, Patientencharakteristika und Ergebnisse der Studien wurde in den Tabellen 26 bis 37 zusammengestellt.

Tabelle 26 gibt eine Übersicht über die Zielgrößen.

In Tabelle 27 und Tabelle 28 ist das Studiendesign für Studien mit Zielgrößen zu Gefäßveränderungen dargestellt, in Tabelle 29 und Tabelle 30 das Studiendesign für die Studien mit Zielgrößen oxidativer Stress.

In Tabelle 31 sind die vor der Intervention oder die als Membran der Kontrollgruppe fungierenden Membranen genannt.

In Tabelle 32 sind Intervention, Begleitmedikation und Zielgrößen für die Studien mit Zielgrößen zu Gefäßveränderungen beschrieben, in Tabelle 33 die Intervention, Begleitmedikation und Zielgrößen für Studien mit Zielgrößen oxidativer Stress.

In Tabelle 34 sind die Patientencharakteristika für die Patientencharakteristika für Studien mit Zielgrößen zu Gefäßveränderungen aufgeführt, in Tabelle 35 die Patientencharakteristika für Studien mit Zielgrößen oxidativer Stress.

Tabelle 36 zeigt die Ergebnisse für die Studien mit Zielgrößen zu Gefäßveränderungen, Tabelle 37 die Ergebnisse für Studien mit Zielgrößen oxidativer Stress.

4.3.2.2.1.1 Fragestellung, Zielgrößen und Studienpopulation

Antioxidative Vitamine zur Prävention kardiovaskulärer Erkrankungen nach Nierentransplantation und bei chronischer Niereninsuffizienz

Tabelle 26: Übersicht über die Zielgrößen der Studien mit Vitamin-E-beschichteten Dialysemembranen.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Klinische Zielgrößen</td>
<td></td>
</tr>
<tr>
<td>Myokardinfarkt, Schlaganfall, PAV</td>
<td></td>
</tr>
<tr>
<td>Bestimmung der klassischen Risikofaktoren für die Entstehung der Atherosklerose</td>
<td></td>
</tr>
<tr>
<td>Cholesterin</td>
<td></td>
</tr>
<tr>
<td>Eigenschaften der Blutzellen</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Gerinnungsfaktoren</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Lipoproteine</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Triglyceride</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Messung ihrer Progression</td>
<td></td>
</tr>
<tr>
<td>Gefäß eigenschaften</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Marker für oxidativen Stress</td>
<td></td>
</tr>
<tr>
<td>DNA-Schädigung</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Entzündungsparameter</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Enzymatische Antioxidantien</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Genexpression von Enzymen</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Nicht-enzymatische Antioxidantien</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Oxidierbarkeit von Lipiden</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Oxidierte Lipide</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Oxidierte Lipoproteine</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ROS</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4.3.2.2.1.2 Allgemeine Angaben

4.3.2.2.1.3 Studiendesign

Tabelle 27: In die Informationssynthese eingeschlossene Studien zur Vitamin E-beschichteten Membran mit Zielgrößen zu Gefäßveränderungen: Studiendesign I.

<table>
<thead>
<tr>
<th>Quelle</th>
<th>Land (Zentrenanzahl) / Rekrutierungszeitraum</th>
<th>Studiendesign</th>
<th>EN</th>
<th>Verblindung</th>
<th>Concealment</th>
<th>Follow-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kobayashi 2003</td>
<td>Japan (k. A.)/ k. A.</td>
<td>RCT</td>
<td>Ila</td>
<td>K. A.</td>
<td>K. A.</td>
<td>Ein Jahr</td>
</tr>
<tr>
<td>Mune 1999</td>
<td>Japan (1)/ k. A.</td>
<td>RCT</td>
<td>Ila</td>
<td>K. A.</td>
<td>K. A.</td>
<td>Zwei Jahre</td>
</tr>
<tr>
<td>Nakamura 2003</td>
<td>Japan (k. A.)/ k. A.</td>
<td>Nicht-randomisierte Interventionsstudie mit Kontrollgruppe</td>
<td>Ila</td>
<td>N. r.</td>
<td>N. r.</td>
<td>Zehn Wo</td>
</tr>
</tbody>
</table>

Tabelle 28: In die Informationssynthese eingeschlossene Studien zur Vitamin E-beschichteten Membran mit Zielgrößen zu Gefäßveränderungen: Studiendesign II.

<table>
<thead>
<tr>
<th>Quelle</th>
<th>Anzahl eingeschlossener P (eligible P)</th>
<th>Gruppen (Anzahl der P / Gruppe)</th>
<th>Population, CVD- Status</th>
<th>Ein- / Ausschlusskriterien</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kobayashi 2003</td>
<td>34 (k. A.)</td>
<td>1 IG (17) / 1 KG (17)</td>
<td>HD P, k. A.</td>
<td>K. A.</td>
</tr>
<tr>
<td>Mune 1999</td>
<td>50 (k. A.)</td>
<td>1 IG (25) / 1 KG (25)</td>
<td>HD P, k. A.</td>
<td>A: Keine Diabetiker</td>
</tr>
<tr>
<td>Nakamura 2003</td>
<td>30 (k. A.)</td>
<td>2 IG (7; 5) / 2 KG (12; 6)</td>
<td>HD P, m/o LDL-Apherese, k. A.</td>
<td>E: Nur Kriterien für die LDL-Apherese genannt: blasse, offene Stellen, verschließende Stadien d. Atherosklerose, Versagen konventioneller Medikation</td>
</tr>
</tbody>
</table>

Tabelle 29: In die Informationssynthese eingeschlossene Studien zur Vitamin E-beschichteten Membran mit Erfassung des oxidativen Stresses: Studiendesign I.

<table>
<thead>
<tr>
<th>Quelle</th>
<th>Land (Zentrenanzahl) / Rekrutierungszeitraum</th>
<th>Studiendesign</th>
<th>EN</th>
<th>Verblindung</th>
<th>Concealment</th>
<th>Follow-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calo 2004</td>
<td>Italien (1)/ k. A.</td>
<td>Nicht-randomisierte Interventionsstudie mit Kontrollgruppe</td>
<td>Ila</td>
<td>K. A.</td>
<td>K. A.</td>
<td>Ein Jahr</td>
</tr>
<tr>
<td>Clermont 2001</td>
<td>Frankreich (k. A.)/ k. A.</td>
<td>RCT „Cross-Over“-Design</td>
<td>Ila</td>
<td>K. A.</td>
<td>K. A.</td>
<td>Zwei Mo</td>
</tr>
<tr>
<td>Hara 2004</td>
<td>Japan (k. A.)/ k. A.</td>
<td>Nicht-randomisierte Interventionsstudie</td>
<td>Ila</td>
<td>N. r.</td>
<td>N. r.</td>
<td>Zwölf Mo</td>
</tr>
</tbody>
</table>
Antioxidative Vitamine zur Prävention kardiovaskulärer Erkrankungen nach Nierentransplantation und bei chronischer Niereninsuffizienz

Fortsetzung Tabelle 29: In die Informationssynthese eingeschlossene Studien zur Vitamin E-beschichteten Membran mit Erfassung des oxidativen Stresses: Studiendesign I.

<table>
<thead>
<tr>
<th>Quelle</th>
<th>Land (Zentrenzahl) / Rekrutierungszeitraum</th>
<th>Studientyp</th>
<th>EN</th>
<th>Verblindung</th>
<th>C. A.</th>
<th>Follow-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pertosa 2002</td>
<td>Italien (k. A.) / k. A.</td>
<td>RCT, „Cross-Over“-Design</td>
<td>IIa</td>
<td>K. A.</td>
<td>K. A.</td>
<td>Sechs Mo</td>
</tr>
<tr>
<td>Taring 2000</td>
<td>Taiwan (4) / Dezember / 1998 bis Mai / 1999</td>
<td>(A) Nicht-randomisierte Interventionsstudie (B) RCT „Cross-Over“-Studie</td>
<td>IIa</td>
<td>K. A.</td>
<td>K. A.</td>
<td>Acht Wo</td>
</tr>
<tr>
<td>Tsuruoka 2002</td>
<td>Japan (k. A.) / k. A.</td>
<td>RCT mit aufgedeckter Verteilung u. „Cross-Over“-Design</td>
<td>IIa</td>
<td>Keine</td>
<td>Kein</td>
<td>32 Wo</td>
</tr>
<tr>
<td>Usberti 2002</td>
<td>Italien (k. A.) / k. A.</td>
<td>Interventionsstudie Randomisierung unklar</td>
<td>IIa</td>
<td>K. A.</td>
<td>K. A.</td>
<td>Sechs Mo</td>
</tr>
</tbody>
</table>

Tabelle 30: In die Informationssynthese eingeschlossene Studien zur Vitamin E-beschichteten Membran mit Erfassung des oxidativen Stresses: Studiendesign II.

<table>
<thead>
<tr>
<th>Quelle</th>
<th>Anzahl eingeschlossener P (eligible P)</th>
<th>Gruppen (Anzahl der P / Gruppe)</th>
<th>Population, CVD-Status</th>
<th>Ein-/ Ausschlusskriterien</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calo 2004</td>
<td>16 (k. A.)</td>
<td>1 IG (8) 1 KG (8)</td>
<td>HD P, k. A.</td>
<td>E: ≥ 1 Jahr Hämodialyse mit konventionellen Dialysatoren A: Nachweis von Entzündungsmarkern (CRP, α2-Globuline, Monozytenzahl, Leukozytenzahl), klinische entzündungsbedingte Symptome</td>
</tr>
</tbody>
</table>

DAHTA@DIMDI 48
Fortsetzung Tabelle 30: In die Informationssynthese eingeschlossene Studien zur Vitamin E-beschichteten Membran mit Erfassung des oxidativen Stresses: Studiendesign II.

<table>
<thead>
<tr>
<th>Quelle</th>
<th>Anzahl eingeschlossener P (eligible P)</th>
<th>Gruppen (Anzahl der P / Gruppe)</th>
<th>Populatation, CVD-Status</th>
<th>Ein- / Ausschlusskriterien</th>
</tr>
</thead>
</table>

4.3.2.2.1.4 Intervention

Antioxidative Vitamine zur Prävention kardiovaskulärer Erkrankungen nach Nierentransplantation und bei chronischer Niereninsuffizienz

Die Membranen, die vor einer Intervention mit der Vitamin E-beschichteten Membran oder als Kontrollmembran in der Vergleichsgruppe fungierten, sind in Tabelle 31 aufgelistet.

Tabelle 31: In den Studien verwendete Dialysemembranen.

<table>
<thead>
<tr>
<th>Autor</th>
<th>Vitamin E- Membrane</th>
<th>Vergleichsmembran bzw. vor der Intervention verwendete Membran</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bufano 2004</td>
<td>Vitamin E-beschichtete Membran</td>
<td>Zellulosemembran CL-SU Terumo Co., Ltd., Tokyo</td>
</tr>
<tr>
<td>Calo 2004</td>
<td>Vitamin E-beschichtete Membran</td>
<td>° Cuprammonium ryon dialyzer
° Low-flux polysulphone dialyzer
° Cellulose acetate dialyzer</td>
</tr>
<tr>
<td>Clermont 2001</td>
<td>Vitamin E-beschichtete Membran</td>
<td>Synthetic Membran:
° Synthetic AN69 XT hollow fiber - composed of acylonitrile and metalysulfonate copolymer</td>
</tr>
<tr>
<td>Eiselt 2001</td>
<td>Vitamin E-beschichtete Membran</td>
<td>Zellulosemembran CL-SU Terumo Co., Ltd., Tokyo</td>
</tr>
<tr>
<td>Hara 2004</td>
<td>Vitamin E-beschichtete Membran</td>
<td>° Eval membrane
° Cellulose triacetat Membran
° Polymethyl-meta-acrylate-Membran
° Polysulfone Membran
° Vitamin E-beschichtete Membran CL-EE Terumo Co., Ltd., Tokyo</td>
</tr>
<tr>
<td>Kobayashi 2003</td>
<td>Vitamin E-beschichtete Membran</td>
<td>Zellulosemembran CL-SU Terumo Co., Ltd., Tokyo</td>
</tr>
<tr>
<td>Mune 1999</td>
<td>Vitamin E-beschichtete Membran</td>
<td>Konventionelle Zellulosemembran nicht näher bezeichnet</td>
</tr>
</tbody>
</table>
Fortsetzung Tabelle 31: In den Studien verwendete Dialysemembranen.

<table>
<thead>
<tr>
<th>Autor</th>
<th>Vitamin E- Membrane</th>
<th>Vergleichsmembran bzw. vor der Intervention verwendete Membran</th>
</tr>
</thead>
</table>
| Nakamura 2003 | Vitamin E-beschichtete Membran CL-EE Terumo Co., Ltd., Tokyo | ° Cellulose triacetat-Membran
° Ethylen vinyl alkohol-Membran
° Polysulfon-Membran
° Polymethylmethacrylat-Membran |
| Pertosa 2002 | Vitamin E-beschichtete Membran CL-EE Terumo Co., Ltd., Tokyo | Synthetische Membran:
° CA hollow fiber dialyzer (Celluloseacetat
° 180; Althin, Milan Italy) |
| Targ 2000 | Vitamin E-beschichtete Membran CL-EE Terumo Co., Ltd., Tokyo | ° Zellulosemembran CL-SU Terumo Co., Ltd., Tokyo
° High-Flux PMMA (Polymethyl-meta-acrylat-Membran group; Toray,Tokyo)
° High-Flux-PS (Polysulphone group; Fresenius, Borkenberg) |
| Tsuruoka 2002 | Vitamin E-beschichtete Membran CL-EE Terumo Co., Ltd., Tokyo | ° Zellulosemembran CL-SU Terumo Co., Ltd., Tokyo |
| Usberti 2002 | Vitamin E-beschichtete Membran CL-EE Terumo Co., Ltd., Tokyo | ° Cuprophan
° Celluloseacetat
° Polyacrylonitrile
° Polymethyl-meta-acrylat-Membran
° Polysulphone |

4.3.2.2.1.5 Begleitmedikation

Tabelle 32: In die Informationssynthese eingeschlossene zur Vitamin E-beschichteten Membran mit Zielgrößen zu Gefäßveränderungen: Intervention, Begleitmedikation und Zielgrößen.

<table>
<thead>
<tr>
<th>Quelle</th>
<th>Intervention</th>
<th>Begleitmedikation (N Intervention / N Placebo) bzw. (alle P)</th>
<th>Zielgrößen</th>
</tr>
</thead>
</table>
| Kobayashi 2003 | CLE oder kVM | Eicosapentanoic – Fettsäuren (6 / 7) | Prim.: Keine Fallzahlplanung
Sek.: IMT u. Viskosität der Karotiden, %DMR von RBC
PWV-SD |
| Mune 1999 | CLE oder kVM | Kein VitE | Prim.: Keine Fallzahlplanung
Sek.: MDA, oxLDL, Plasma Lipid, Vit E, ACI |
| Nakamura 2003 | CLE + LDL-Apherese kVM kVM + LDL-Apherese | Kein Vit E Blutdrucksenker (20) Prostaglandine (alle P) Statine (alle P) Eicosapentanoic – Fettsäuren (16) | Prim.: Keine Fallzahlplanung
Sek.: IMT, Versteifung der Arterien gem. an der Geschwindigkeit des arteriellen Pulses (PWV), CRP, Interleukin (IL)-6 |

ACI = Aortenkalzifizierungsindex. **CLE** = Vitamin E-beschichtete Membran. **CRP** = C-reactives Protein. **DMR** = Dysmorphismus roter Blutkörperchen. **IMT** = Intima Media Dicke. **KVM** = Konventionelle Vergleichsmembran. **MDA** = Malondialdehyd.
N = Anzahl der eingeschlossenen Patienten. **oxLDL** = Oxidiertes Low Density Lipoprotein. **P** = Patienten.
PWV = Pulswellengeschwindigkeit. **RBC** = Rote Blutzellen. **RDW-SD** = Erythrozytenverteilungsbreite (Standardabweichung).
Antioxidative Vitamine zur Prävention kardiovaskulärer Erkrankungen nach Nierentransplantation und bei chronischer Niereninsuffizienz

Tabelle 33: In die Informationssynthese eingeschlossene Studien zur Vitamin E-beschichteten Membran mit Erfassung des oxidativen Stresses: Intervention, Begleitmedikation und Zielgrößen.

<table>
<thead>
<tr>
<th>Quelle</th>
<th>Intervention</th>
<th>Komedikation (N IG /N KG) od. (GG) od. Werte</th>
<th>Zielgrößen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clermont 2001</td>
<td>CLE oder kVM</td>
<td>Zyklistische Diuretika (7) Betablokker (3) Kalziumkanalblocker (2) Alphablocker (1)</td>
<td>Prim.: Keine Fallzahlplanung Sek.: Vit C-Konzentration, Elastaseaktivität, AFR / Vitamin C-Verhältnis</td>
</tr>
<tr>
<td>Hara 2004</td>
<td>Nur kVM oder Wechsel von kVM zu CLE</td>
<td>K. A.</td>
<td>Prim.: Keine Fallzahlplanung Sek.: oxidiertes LDL im Verhältnis zu LDL im Serum</td>
</tr>
<tr>
<td>Pertosa 2002</td>
<td>CLE oder kVM, dann Wechsel; kVM oder CLE, dann Wechsel</td>
<td>K. A.</td>
<td>Prim.: Keine Fallzahlplanung Sek.: Aktivierung der JNK in PBMC, Konzentrationen des C5b-9, Aktivierung von PBMCs anhand Genexpression der NO Synthase (iNOS) durch in situ Hybridisierung</td>
</tr>
<tr>
<td>Tsuruoka 2002</td>
<td>Untersch. zeitl. Abfolge von CLE u. kVM</td>
<td>Blutdrucksenker (7) Kalziumcarbonat (7)</td>
<td>Prim.: Keine Fallzahlplanung Sek.: WBC, PMN, Aktivität der PMN gem. an der Superoxidanionproduktion, Cholesterin, oxidierter LDL, MDA</td>
</tr>
</tbody>
</table>

4.3.2.2.1.6 Patientencharakteristika

Tabelle 34: In die Informationssynthese eingeschlossene Studien zur Vitamin E-gebundenen Membran mit Zielgrößen zu Gefäßveränderungen: Patientencharakteristika.

<table>
<thead>
<tr>
<th>Quelle</th>
<th>Geschlecht / Alter in Jahren (MW + SD) od. (Spannweite)</th>
<th>Gemessene Patientenparameter IG / KG (MW od. Spannweite) bzw. GG (MW od. Spannweite)</th>
<th>HD-alter (MW ± SD in Mo) od. (Spannweite)</th>
<th>Diagnosen der Niereninsuffizienz (N IG / N KG) bzw. (GG)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kobayashi 2003</td>
<td>44,1% F / 62 ± 12</td>
<td>Cholesterin (mg/dl) 150 / 153 Blutdruck (mm Hg) 110 / 112 BMI 21,2 / 21,7 HDL (mg/dl) 45 / 44 Kt / V 1,31 / 1,28</td>
<td>53 ± 31/ 53 ± 32</td>
<td>Glomerulonephritis (26)</td>
</tr>
<tr>
<td>Mune 1999</td>
<td>IG: 56 % F/ 57 ± 8 KG: 56% F/ 58±10</td>
<td>K. A.</td>
<td>84 ± 55 / 88 ± 65</td>
<td>K. A.</td>
</tr>
<tr>
<td>Nakamura 2003</td>
<td>IG: 25 % F / 54 ± 5 KG: 33 % F/ 54,5 ± 5</td>
<td>Blutdruck (mm HG) sys.: 132; 142 / 136; 138 dia.: 74; 82 / 76; 80 Cholesterin (mg/dl): 264; 270 / 275; 272 Kt / V 40 ± 10</td>
<td>Diabetes (15) Glomerulonephritis (5), Polyzystische Nierenerkr. (3) Nephrosklerosis (3) Unklare Diagnose (4)</td>
<td></td>
</tr>
</tbody>
</table>

Tabelle 35: In die Informationssynthese eingeschlossene Studien zur Vitamin E-beschichteten Membran mit Erfassung des oxidativen Stresses: Patientencharakteristika.

<table>
<thead>
<tr>
<th>Quelle</th>
<th>Geschlecht / Alter in Jahren (MW + SD) od. (Spannweite)</th>
<th>Gemessene Patientenparameter IG / KG (MW od. Spannweite) bzw. GG (MW od. Spannweite)</th>
<th>HD-alter (MW ± SD in Mo) od. (Spannweite)</th>
<th>Diagnosen der Niereninsuffizienz (N IG / N KG) od. (GG)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bufano 2004</td>
<td>K. A. / 58,3 ± 7,0</td>
<td>Cholesterin (mmol/l) 5,62 / 5,58 LDL-c (mmol/l) 4,87 / 4,39 HDL-c (mmol/l) 1,10 / 1 ,19 Vitamin E (µg/mg Chol) 4,69 / 4,4 Ox LDL-Ab (µU/ml) 468,6 / 472,1 vWF (%) 98,6 / 101,1 TM (ng/ml) 204,8 / 198,5</td>
<td>30,1 ± 10,0 (GG)</td>
<td>Glomerulonephritis (10), Interstitielle Nephritis (10), Polyzystische Nierenerkrankung (8) Chron. Pyelonephritis (8), Unspezifische Nephropathie (2) Unklare Diagnose (4)</td>
</tr>
<tr>
<td>Calo 2004</td>
<td>K-Studie: nur IG: 20 % F / 55 bis 75 L-Studie: IG: 37,5 % F / 48 bis 65 KG: 37,5 % F / 50 bis 67 (alle kein MW)</td>
<td>Blutdruck (mm Hg) 135 / 85 bis 150 / 90 (kein MW) Kt / V 1,3 bis 1,7 (kein MW)</td>
<td>K. A.</td>
<td>K. A.</td>
</tr>
</tbody>
</table>
Antioxidative Vitamine zur Prävention kardiovaskulärer Erkrankungen nach Nierentransplantation und bei chronischer Niereninsuffizienz

<table>
<thead>
<tr>
<th>Quelle</th>
<th>Geschlecht / Alter in Jahren (MW ± SD) od. (Spannweite)</th>
<th>Gemessene Patientenparameter IG / KG (MW od. Spannweite)</th>
<th>HD-alter (MW ± SD in Mo) od. (Spannweite)</th>
<th>Diagnosen der Niereninsuffizienz (N IG / N KG od. (GG))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clermont 2001</td>
<td>45,5 % F / 61,6 ± 4,0</td>
<td>Herzschlagfrequenz (beats/min) 76 ± 4 / 78 ± 3</td>
<td>40 ± K. A. (GG)</td>
<td>IgA Nephropathie (3), Nephrosklerose (3), Polyzystische Nierenerkrankungen (3), Interstitionelle Nephritis (2), Diabetes (3), Alports Syndrom (1), Unklare Diagnose (1)</td>
</tr>
<tr>
<td>K-Studie:</td>
<td>41,7 % F / 66 ± K.A.</td>
<td>Anurie (N) K7 / 16</td>
<td>41 (8-153) (GG)</td>
<td>Pyelonephritis (k10 / 112), Diabetes (k9 / 13), Polyzystische Niereninsuffizienz (k3 / 12), Glomerulonephritis (k1 / 12), Alports Syndrom (k1 / 10), Nephrosklerose (k0 / 11) (Je K-/ L-Studie)</td>
</tr>
<tr>
<td>L-Studie:</td>
<td>50 % F / 64 ± K. A.</td>
<td>Kreatinin (mg/dl) 2,4 (alle P)</td>
<td>158,0 ± 85,4 (GG)</td>
<td>Glomerulonephritis (11), Diab. Nephropathie (1), Polyzystische Niereninsuffizienz (1) (Je K-/ L-Studie)</td>
</tr>
<tr>
<td>Hara 2004</td>
<td>58,5 % F / 60 ± 16 (IG)</td>
<td>Harnstoff im Serum (preHD und postHD): keine Werte</td>
<td>24,2 ± K. A. (12 bis 55) (GG)</td>
<td>Glomerulonephritis (4), Interstitionelle Nephritis (2), Zystische Erkr. (2)</td>
</tr>
<tr>
<td>Pertosa 2002</td>
<td>50 % F / 43,2 ± K. A. (20 bis 65)</td>
<td>8-OHdG (106 dG) 16,8 / 30,4, 20,0, 18,6</td>
<td>IG: 32 ± 25 KG: 1: 34 ± 21 2: 29 ± 18 3: 26 ± 20</td>
<td>Diabetes (29), Glomerulonephritis (28), Interstitionelle Nephritis (12), Hypertonie (13), Systemischer Lupus (8), Unklare Diagnose (20)</td>
</tr>
<tr>
<td>Usberti 2002</td>
<td>44,7% F / 24 bis 78</td>
<td>Cholesterin (mg/dl) 77±8</td>
<td>114,0 ± 34,8 (GG)</td>
<td>Glomerulonephritis (19), Interstitionelle Nephritis (11), Polyzystische Niereninsuffizienz (5), Nephrosklerose (7), Unklare Gründe (5)</td>
</tr>
</tbody>
</table>

Antioxidative Vitamine zur Prävention kardiovaskulärer Erkrankungen nach Nierentransplantation und bei chronischer Niereninsuffizienz

4.3.2.2.2 studienqualität

4.3.2.2.2.1 Auswahl der Studienteilnehmer

4.3.2.2.2.2 Zuordnung und Studienteilnahme

Die nicht-randomisierten Interventionsstudien machten keine Angaben über die Zuteilungskriterien der Behandlungsgruppen.

4.3.2.2.2.3 Intervention und Studienadministration

4.3.2.2.2.4 Outcomemessung

Im Folgenden wird ein detaillierter Überblick über die Messmethoden von Biomarkern für oxidativen Stress in allen Studien zur oralen Supplementation und zu Vitamin E-beschichteten Hämodialysemembranen gegeben.
Detaillierte Beschreibung über die Messmethoden von Biomarkern für oxidativen Stress in allen Studien zur oralen Supplementation und zu Vitamin E-beschichteten Hämodialysemembranen

Die Messung der intermediären Zielgrößen weist in den bewerteten Studien eine starke Variabilität auf (Tabelle 36). Zum einen ist die Variabilität durch die Messung unterschiedlicher Biomarker wie der Endprodukte der Lipidperoxidation, durch ROS geschädigter DNA, der Oxidation von Proteinen und der Erfassung des antioxidativen Status mittels Vitamin E, C Konzentrationen oder SOD und Gluthation Peroxidase bedingt, auf der anderen Seite gibt es zur Messung derselben Zielgrößen unterschiedliche Messmethoden.

<table>
<thead>
<tr>
<th>Referenz</th>
<th>Biomarker</th>
<th>Messmethode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chao 2002</td>
<td>MDA und 4-HNE im Blutplasma</td>
<td>Nach Reaktion mit einem Chromogen spektrophotometrisch bei 586 nm (Calbiochem)</td>
</tr>
<tr>
<td></td>
<td>Reduziertes Glutathion in Erythrozyten</td>
<td>Spektrophotometrisch bei 400 nm (Calbiochem)</td>
</tr>
<tr>
<td></td>
<td>TAS</td>
<td>Fähigkeit der Antioxidantien gemessen an der Oxidation von ABTS® (2,2’-azino-di-[3-ethylbenzthiazoline sulfonate]) zu ABTS® (Absorbtionsspektrum 600 nm)</td>
</tr>
<tr>
<td></td>
<td>Vitamin C</td>
<td>HPLC</td>
</tr>
<tr>
<td></td>
<td>Vitamin E</td>
<td>HPLC</td>
</tr>
<tr>
<td></td>
<td>Cholesterin</td>
<td>Im EDTA-Plasma enzymatisch (CHOD-PAD)</td>
</tr>
<tr>
<td>Khajehdehi 2000</td>
<td>HDL-c</td>
<td>Im Plasma-Überstand nach Ausfällung mit Dextranulfat</td>
</tr>
<tr>
<td></td>
<td>LDL-c</td>
<td>Berechnet aus totaler Lipidkonzentration</td>
</tr>
<tr>
<td></td>
<td>Triglyceride</td>
<td>Enzymatisch kolorimetrisch (GOP-PAD)</td>
</tr>
<tr>
<td></td>
<td>Triglyceride / HDL-c</td>
<td>berechnet mit Friedewalds Gleichung</td>
</tr>
<tr>
<td>Roob 2000</td>
<td>Cholesterin</td>
<td>Im EDTA-Plasma enzymatisch (CHOD-PAD)</td>
</tr>
<tr>
<td></td>
<td>Gesamtperoxid</td>
<td>Peroxidase-Aktivitäts-Assay (POX ACT) (Absorbtionsspektrum 600 nm)</td>
</tr>
<tr>
<td></td>
<td>MDA</td>
<td>MDA-TBA-Derivat mittels HPLC</td>
</tr>
<tr>
<td></td>
<td>Vitamin E</td>
<td>Im EDTA-Plasma HPLC</td>
</tr>
<tr>
<td>Targ 2004</td>
<td>8-OhdG-Level</td>
<td>In Lymphozyten mittels HPLC</td>
</tr>
<tr>
<td></td>
<td>Genexpression v. hOGG1 u. hMTH1 in peripheren Lymphozyten</td>
<td>RT-PCR</td>
</tr>
<tr>
<td>Williams 2001</td>
<td>Cholesterin</td>
<td>Enzymatisch</td>
</tr>
<tr>
<td></td>
<td>HDL</td>
<td>Im Plasma-Überstand nach Ausfällung mit Dextranulfat</td>
</tr>
<tr>
<td></td>
<td>„Lag Time“ der Lipoproteinoxidation</td>
<td>Isoliertes LDL, das Cu2+ ausgesetzt wurde</td>
</tr>
<tr>
<td></td>
<td>LDL</td>
<td>Berechnet mittels Friedewald’s Formula</td>
</tr>
<tr>
<td></td>
<td>Vasodilatation</td>
<td>Ultraschall</td>
</tr>
<tr>
<td>Bufano 2004</td>
<td>Cholesterin</td>
<td>Keine Angaben</td>
</tr>
<tr>
<td></td>
<td>oxLDL-Ab</td>
<td>Enzymimmunoassay (oLab-ELISA)</td>
</tr>
<tr>
<td></td>
<td>Vitamin E</td>
<td>HPLC</td>
</tr>
<tr>
<td></td>
<td>vWF, Thrombomodulin</td>
<td>im Plasma mittels immuno-enzymatischer Analyse (Asserachrom ELISA kit)</td>
</tr>
<tr>
<td>Calo 2004</td>
<td>AOC</td>
<td>ELISA (Messung der Derivierung der Reduktion von Cu++ zu Cu +)</td>
</tr>
<tr>
<td></td>
<td>Genexpression von p22phox mRNA</td>
<td>PCR</td>
</tr>
<tr>
<td></td>
<td>Hämoxigenase</td>
<td>PCR</td>
</tr>
<tr>
<td></td>
<td>Spot Plasma-Level von HPO AFR</td>
<td>Spektrophotometisch</td>
</tr>
<tr>
<td></td>
<td>Elastaseaktivität</td>
<td>Elektronenspinresonanz</td>
</tr>
<tr>
<td>Clermont 2001</td>
<td>Vitamin C</td>
<td>Chromogener Assay</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HPLC (fluorimetrische Detektion)</td>
</tr>
<tr>
<td>Referenz</td>
<td>Biomarker</td>
<td>Messmethode</td>
</tr>
<tr>
<td>---------------</td>
<td>---------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Eiselt 2001</td>
<td>AOC</td>
<td>Kit von Randox Laboratories (keine näheren Angaben)</td>
</tr>
<tr>
<td></td>
<td>Glutathion</td>
<td>Bioxytech GSH-400 Kit (keine näheren Angaben)</td>
</tr>
<tr>
<td></td>
<td>Glutathion Peroxidase</td>
<td>Kit von Randox Laboratories (keine näheren Angaben)</td>
</tr>
<tr>
<td></td>
<td>Superoxid Dismutase</td>
<td>Kit von Randox Laboratories (keine näheren Angaben)</td>
</tr>
<tr>
<td></td>
<td>TBARS</td>
<td>HPLC nach Methodik von Jentzsch et al. 1996, unter Zugabe von butyliertem Hydroxytoluen und unter Ausschluss von Sauerstoff</td>
</tr>
<tr>
<td></td>
<td>Vitamin C</td>
<td>Kolorimetrisch mit L-Ascorbinsäure-Kit (Boehringer Mannheim)</td>
</tr>
<tr>
<td>Hara 2004</td>
<td>Oxidiertes LDL</td>
<td>ELISA, Verwendung von Antikörpern gegen oxidiertes Phosphatidylcholin</td>
</tr>
<tr>
<td>Kobayashi 2003</td>
<td>%DMR von RBC</td>
<td>Elektronenmikroskop</td>
</tr>
<tr>
<td></td>
<td>IMT</td>
<td>Ultraschall</td>
</tr>
<tr>
<td></td>
<td>RDW-SD</td>
<td>Keine Angabe</td>
</tr>
<tr>
<td></td>
<td>Viskosität der Karotiden</td>
<td>Keine Angabe</td>
</tr>
<tr>
<td>Mune 1999</td>
<td>ACI</td>
<td>Computertomographie</td>
</tr>
<tr>
<td></td>
<td>MDA</td>
<td>TBA-Methode (keine näheren Angaben)</td>
</tr>
<tr>
<td></td>
<td>oxLDL</td>
<td>ELISA</td>
</tr>
<tr>
<td></td>
<td>Vitamin E</td>
<td>Keine Angaben</td>
</tr>
<tr>
<td>Nakamura 2003</td>
<td>CRP</td>
<td>ELISA</td>
</tr>
<tr>
<td></td>
<td>Interleukin (IL)-6</td>
<td>Hochauflösender B-Mode Ultraschall</td>
</tr>
<tr>
<td></td>
<td>PWV, ABI</td>
<td>ELISA (Quantikine human IL-6 immunoassay)</td>
</tr>
<tr>
<td>Pertosa 2002</td>
<td>Aktivierung der JNK in PBMC</td>
<td>Doppel-Sandwich-ELISA (unter Verwendung spezifischer Antikörper für den terminalen Komplementkomplex)</td>
</tr>
<tr>
<td></td>
<td>Genexpression der NO-Synthase (iNOS) durch in situ Hybridisierung</td>
<td>quantifiziert durch ein morphometrisches Analysesystem</td>
</tr>
<tr>
<td></td>
<td>In Lymphozyten mittels HPLC</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fluoreszenz-spektrophotometisch mittels Fluoreszenzspektrometer in mononukleären Leukozyten bei 525 nm und mit intrazellulärem Farbstoff 2.7'-Dichlorofluoresceindiacetat (DCF-DA)</td>
<td></td>
</tr>
<tr>
<td>Tarmg 2000</td>
<td>B-OHdG-Level</td>
<td>In Lymphozyten mittels HPLC</td>
</tr>
<tr>
<td></td>
<td>Intrazelluläre Produktion von ROS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vitamin E</td>
<td>HPLC</td>
</tr>
<tr>
<td>Tsuruoka 2002</td>
<td>Cholesterin</td>
<td>Gelelektrophorese mit enzymatischer Färbemethode</td>
</tr>
<tr>
<td></td>
<td>MDA</td>
<td>Erfassung der TBARS-Konzentration</td>
</tr>
<tr>
<td></td>
<td>Oxidiertes LDL</td>
<td>Sandwich ELISA</td>
</tr>
<tr>
<td></td>
<td>PMN-Aktivität (gemessen an der Superoxidanion-Produktion)</td>
<td>Erfasst durch die von Superoxidanion verhinderbare Reduktion des Zytochrom-c</td>
</tr>
<tr>
<td></td>
<td>WBC</td>
<td>Erfasst per elektronischem Zellzählgerät (Coulter Counter STKS)</td>
</tr>
</tbody>
</table>
Antioxidative Vitamine zur Prävention kardiovaskulärer Erkrankungen nach Nierentransplantation und bei chronischer Niereninsuffizienz

Fortsetzung Tabelle 36: Gesamtüberblick der verwendeten Messmethoden von Biomarkern in allen Studien.

<table>
<thead>
<tr>
<th>Referenz</th>
<th>Biomarker</th>
<th>Messmethode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Usberti 2002</td>
<td>Entstehung von Peroxyradikalen</td>
<td>ROM-Test; die Entstehung des roten radikalischen Kations DEPPD⁺ wird photometrisch gemessen, es entsteht durch Reaktion mit Peroxyradikalen mit DEPPD. Detektion bei 505 nm</td>
</tr>
<tr>
<td></td>
<td>MDA-4HNE</td>
<td>Nach Reaktion mit einem Chromogen spektrophotometrisch bei 586 nm</td>
</tr>
<tr>
<td></td>
<td>TAS</td>
<td>Randox Kit: Fähigkeit der Antioxidantien gemessen an der Oxidation von ABTS²⁻·2,2'-azino-di-[3-ethylbenzthiazoline sulfonate)] zu ABTS⁵⁺⁺ (Absorptionspektrum 600 nm)</td>
</tr>
<tr>
<td></td>
<td>Thiole</td>
<td>Spektrophotometrisch basierend auf der kolorimetrischen Reaktion der Sulfhydryle mit dem Reagens Chloro-1,4-dinitrobenez</td>
</tr>
<tr>
<td></td>
<td>Vitamin E</td>
<td>Intrazelluläre Produktion von ROS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fluoreszenzspektrophotometrisch mittels Fluoreszenzspektrometer in mononukleären Leukozyten bei 525 nm und mit intrazellulärem Farbstoff 2.7.-Dichlorofluorescein-diacetat (DCF-DA)</td>
</tr>
</tbody>
</table>

Tabelle 37: Verschiedenartigkeit der Messmethoden von Biomarkern am Beispiel von MDA.

<table>
<thead>
<tr>
<th>Referenz</th>
<th>Biomarker</th>
<th>Messmethode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chao 2002</td>
<td>MDA und 4-HNE im Blutplasma</td>
<td>Nach Reaktion mit einem Chromogen spektrophotometrisch bei 586 nm (Calbiochem)</td>
</tr>
<tr>
<td>Roob 2000</td>
<td>MDA</td>
<td>MDA-TBA-Derivat mittels HPLC</td>
</tr>
<tr>
<td>Mune 1999</td>
<td>MDA</td>
<td>TBA-Methode (keine näheren Angaben)</td>
</tr>
<tr>
<td>Tsuruoka 2002</td>
<td>MDA</td>
<td>Erfassung der TBARS-Konzentration</td>
</tr>
<tr>
<td>Usberti 2002</td>
<td>MDA-4HNE</td>
<td>Nach Reaktion mit einem Chromogen spektrophotometrisch bei 586 nm</td>
</tr>
</tbody>
</table>

4-HNE =4-(hydroxy-2(E)-nonenal. HPLC = High Pressure Liquid Chromatography. MDA = Malondialdehyd. TBA = Thiobarbitursäure. TBARS = Thiobarbituric Acid Reactive Substances.

4.3.2.2.2.5 Dropouts

4.3.2.2.2.6 Statistische Analyse

4.3.2.2.2.3 Ergebnisse der Studien zum Einfluss von Vitamin E-beschichteten Membranen auf klinische Zielgrößen
Zum Einfluss von Vitamin E-beschichteten Membranen auf klinische Zielgrößen wurden keine Studien identifiziert.

4.3.2.2.2.4 Ergebnisse der Studien zum Einfluss von Vitamin E-beschichteten Membranen auf intermediäre Zielgrößen
Im Anschluss werden die Ergebnisse zu intermediären Zielgrößen getrennt nach gefäßverändernden Parametern und Biomarkern für oxidativen Stress dargestellt.

4.3.2.2.2.5 Ergebnisse der Studien zum Einfluss von Vitamin E-beschichteten Membranen auf gefäßverändernde Zielgrößen
Kobayashi et al. (2003) verglichen die Wirkung einer Dialyse mit Vitamine E-beschichteter Membran im Vergleich mit einer Membran ohne Vitamin E auf die Veränderungen der Gefäßeigenschaften nach
Antioxidative Vitamine zur Prävention kardiovaskulärer Erkrankungen nach Nierentransplantation und bei chronischer Niereninsuffizienz

Tabelle 38: In die Informationssynthese eingeschlossene Studien zur Vitamin E-beschichteten Membran mit Zielgrößen zu Gefäßveränderungen: Ergebnisse.

<table>
<thead>
<tr>
<th>Quelle</th>
<th>IG</th>
<th>KG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kobayashi 2003</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parameter</td>
<td>Ausgangswert</td>
<td>Letzter Messwert</td>
</tr>
<tr>
<td>IMT rechts mm MW (SD) 0,93 ± 0,18</td>
<td>0,88 ± 0,15</td>
<td>< 0,05</td>
</tr>
<tr>
<td>Plaqueprävalenz in % 35,2</td>
<td>41,2</td>
<td>n. s.</td>
</tr>
<tr>
<td>IMT links mm MW (SD) 0,97 ± 0,24</td>
<td>0,87 ± 0,14</td>
<td>< 0,01</td>
</tr>
<tr>
<td>Plaqueprävalenz in % 29,4</td>
<td>35,3</td>
<td>n. s.</td>
</tr>
<tr>
<td>Viskosität 4,84 ± 0,41</td>
<td>4,51 ± 0,54</td>
<td>< 0,01</td>
</tr>
<tr>
<td>% DMR 2,29 ± 2,17</td>
<td>1,90 ± 1,49</td>
<td>< 0,01</td>
</tr>
<tr>
<td>RDW-SD 54,4±7,6</td>
<td>49,3±5,9</td>
<td><0,01</td>
</tr>
</tbody>
</table>
Fortsetzung Tabelle 38: In die Informationssynthese eingeschlossene Studien zur Vitamin E-beschichteten Membran mit Zielgrößen zu Gefäßveränderungen: Ergebnisse.

<table>
<thead>
<tr>
<th>Quelle</th>
<th>Werte der LDL-Apheresegruppen nicht angegeben</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nakamura 2003</td>
<td>Parameter</td>
</tr>
<tr>
<td></td>
<td>PWV (cm/s)</td>
</tr>
<tr>
<td></td>
<td>ABI</td>
</tr>
<tr>
<td></td>
<td>Änderung der IMT (mm)</td>
</tr>
<tr>
<td></td>
<td>IL-6 (pg/ml)</td>
</tr>
<tr>
<td></td>
<td>CRP (mg/dl)</td>
</tr>
<tr>
<td></td>
<td>Cholestrin (mg/dl)</td>
</tr>
<tr>
<td></td>
<td>LDL-Cholestrin (mg/dl)</td>
</tr>
<tr>
<td></td>
<td>Triglyceride (mg/dl)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mune 1999</th>
<th>Ausgangswert</th>
<th>Letzter Messwert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter</td>
<td>IG</td>
<td>KG</td>
</tr>
<tr>
<td>MDA, postHD</td>
<td>K. A.</td>
<td>K. A.</td>
</tr>
<tr>
<td>oxLDL preHD</td>
<td>K. A.</td>
<td>K. A.</td>
</tr>
<tr>
<td>oxLDL postHD</td>
<td>K. A.</td>
<td>K. A.</td>
</tr>
<tr>
<td>ACI (%)</td>
<td>9,8 ± 6,2</td>
<td>10,1 ± 7,0</td>
</tr>
</tbody>
</table>

4.3.2.2.2.6 Ergebnisse der Studien zum Einfluss von Vitamin E-beschichteter Membran auf Marker für oxidativen Stress

Bei Calo et al. (2004) wird in diesem HTA-Bericht nur über die Ergebnisse in der Teilstudie, die Konzentrationen an Hydroperoxiden untersucht, berichtet, da die andere Teilstudie, die oxidative Schäden der DNA misst, mangels einer Kontrollgruppe aus diesem HTA-Bericht ausgeschlossen wurde. Nach einem Jahr waren die Plasmakonzentrationen von Hydroperoxiden der Patienten, die die Hämodialyse mit Vitamin E-beschichteter Membran wieder auf die Zellulosemembran umgestellt wurden, zeigten nach weiteren sechs Monaten eine Zunahme der Konzentrationen des vWF und der oxLDL-Ab.

Clermont et al. fanden wenig Effekte der Vitamin E-beschichteten Membran auf die Zielgrößen. Bis auf eine nachgewiesene statistisch signifikante Erhöhung der Vitamin C-Konzentration unter Dialyse mit einer Vitamin E-beschichteten Membran konnten für die anderen Zielgrößen Ascorbyl Radikal AFR / Vitamin C-Verhältnis, die Plasma Elastase-Aktivität und die Vitamin E-Konzentration keine
signifikanten Veränderungen festgestellt werden. Das nach der Dialyse gemessene AFR/Vitamin C–Verhältnis und die Elastase-Aktivität waren korreliert.

Da Eiselt et al. (2001) eine Kombination zwischen Vitamin E-beschichteter Membran und Vitamin C- Supplementation untersuchten, aber hier nur über Vitamin E-beschichtete Membranen berichtet wird, wird für diese Publikation an dieser Stelle hauptsächlich über die Ergebnisse der Membranintervention berichtet. Die Vergleiche fanden auch hier nur innerhalb der Gruppen statt. Unter Verwendung der Vitamin E-beschichteten Membran ergaben sich keine Änderungen der Konzentrationen an MDA, weder ohne noch mit Vitamin C-Supplementierung. Die Vitamin C-Konzentration verringerte sich signifikant sowohl nach der Dialyse mit und ohne modifizierte Membran ohne zusätzliche Vitamin C-Infusion (\(p < 0,01\)). Die Höhe der antioxidativen Kapazität (AOC) verringerte sich in allen Gruppen signifikant nach der Dialyse im Vergleich zu vor der Dialyse (\(p = 0,001\)). Es wurden allerdings keine Angaben zur statistischen Unsicherheit beim Vergleich zwischen Interventions- und Kontrollgruppe gemacht.

waren die Vitamin E-Konzentrationen höher und die Thiol (–SH)-Konzentrationen im Plasma erniedrigt. Eine signifikante negative Korrelation wurde zwischen der Vitamin E-Konzentration und –SH (r = -0,47; p < 0,001) oder mit der MDA-4HNE (r = -0,46; p < 0,001) gefunden (drei Patienten wurden bei dieser Analyse ausgeschlossen.) Die Erythropoetindosis korrelierte negativ mit der Oxidierbarkeit der Lipide (r = -0,43; p< 0,001). Die Plasma-Vitamin E-Konzentrationen korrelierten positiv mit Hämoglobinwerten und den Halbwertsüberlebenszeiten der roten Blutzellen (r = 0,8; p < 0,001 und r = 0,90; p < 0,0001).

Tabelle 39: In die Informationssynthese eingeschlossene Studien zur Vitamin E-beschichteten Membran mit Erfassung des oxidativen Stress: Ergebnisse.

<table>
<thead>
<tr>
<th>Quelle</th>
<th>Ergebnisse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bufano 2004</td>
<td>Parameter</td>
</tr>
<tr>
<td></td>
<td>Chol. (mmol/l)</td>
</tr>
<tr>
<td></td>
<td>LDL-c (mmol/l)</td>
</tr>
<tr>
<td></td>
<td>HDL-c (mmol/l)</td>
</tr>
<tr>
<td></td>
<td>Vit E (µg/mg von Chol.)</td>
</tr>
<tr>
<td></td>
<td>oxLDL-Ab (mU/ml)</td>
</tr>
<tr>
<td>Calo 2004</td>
<td>6-Monatsstudie, ausgeschlossen, da keine KG, nur IG</td>
</tr>
<tr>
<td></td>
<td>Parameter</td>
</tr>
<tr>
<td></td>
<td>p22phox mRNA (d.u.)</td>
</tr>
<tr>
<td></td>
<td>HO-1mRNA (d.u.)</td>
</tr>
<tr>
<td>Clermont 2001</td>
<td>Keine Ausgangswerte angegeben, nur preHD / postHD-Vergleiche nach Studienende</td>
</tr>
<tr>
<td></td>
<td>Parameter</td>
</tr>
<tr>
<td></td>
<td>Vit E (µg/mol von Chol.)</td>
</tr>
<tr>
<td></td>
<td>Vit C µmol</td>
</tr>
<tr>
<td></td>
<td>AFR / Vit C</td>
</tr>
<tr>
<td></td>
<td>Elastaseaktivität</td>
</tr>
</tbody>
</table>

* p < 0,5; ** p < 0,1
Fortsetzung Tabelle 39: In die Informationssynthese eingeschlossene Studien zur Vitamin E-beschichteten Membran mit Erfassung des oxidativen Stresses: Ergebnisse.

<table>
<thead>
<tr>
<th>Quelle</th>
<th>Ergebnisse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kurzzeitstudie, Vergleich zwischen preHD und postHD</td>
<td>TBARS (µmol/l) PreHD</td>
</tr>
<tr>
<td>IG + Vit C</td>
<td>4,05 ± 0,16</td>
</tr>
<tr>
<td>IG</td>
<td>3,90 ± 0,15</td>
</tr>
<tr>
<td>KG + Vit C</td>
<td>4,28 ± 0,15</td>
</tr>
<tr>
<td>KG</td>
<td>3,95 ± 0,11</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Langzeitstudie, zeitl. Abfolge der versch. Membrane</th>
<th>TBARS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre / postHD-Nettoveränderung oxLDL (ng) nur IG</td>
<td>Sign.</td>
</tr>
<tr>
<td>T: Mo 0</td>
<td>2,66 ± 1,18</td>
</tr>
<tr>
<td>T: Mo 1</td>
<td>1,29 ± 0,65</td>
</tr>
<tr>
<td>bis T: Mo 12</td>
<td>Ungefähr wie T: Mo 1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Gruppenvergleich</th>
<th>oxLDL preHD (ng/µg)</th>
<th>IG</th>
<th>KG</th>
<th>Sign.</th>
</tr>
</thead>
<tbody>
<tr>
<td>IG</td>
<td>1,62 ± 0,83</td>
<td>3,28 ± 2,06</td>
<td>P = 0,01</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Messungen während oder nach der Dialyse, nach drei Monaten, „Cross-Over“-Auswertung unklar</th>
<th>IG</th>
<th>KG</th>
<th>Sign.</th>
</tr>
</thead>
<tbody>
<tr>
<td>C5b-9 T0</td>
<td>Ca. 0,1 (aus Grafik)</td>
<td>0,7</td>
<td>0,005</td>
</tr>
<tr>
<td>C5b-9 T15</td>
<td>Ca. 1,4 (aus Grafik)</td>
<td>1,6</td>
<td>K. A.</td>
</tr>
<tr>
<td>C5b-9 T180</td>
<td>Ca. 1,25 (aus Grafik)</td>
<td>1,7</td>
<td>K. A.</td>
</tr>
<tr>
<td>C5b-9 T480</td>
<td>Ca. 0,1 (aus Grafik)</td>
<td>1,1</td>
<td>0,005</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ausgangswert</th>
<th>8-OHdG/10^6 dG</th>
<th>Vit E/Lipid (mg/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ausgangswert</td>
<td>4 Wo</td>
<td>8 Wo</td>
</tr>
<tr>
<td>CLS -> PMMA</td>
<td>30,6</td>
<td>21,5^a</td>
</tr>
<tr>
<td>CLS -> PS</td>
<td>31,7</td>
<td>21,9^a</td>
</tr>
<tr>
<td>CLS -> CLE</td>
<td>29,1</td>
<td>19,6^a</td>
</tr>
<tr>
<td>PMMA -> CLS</td>
<td>18,5</td>
<td>21,5^a</td>
</tr>
<tr>
<td>PS -> CLS</td>
<td>17,1</td>
<td>19,3^a</td>
</tr>
<tr>
<td>CLE -> CLS</td>
<td>17,8</td>
<td>22,9^a</td>
</tr>
</tbody>
</table>

| ^a p < 0,05 vs. Ausgangswert; ^b p < 0,01 vs. Ausgangswert |
| ^c p < 0,05 vs. CLS -> CLE; ^d p < 0,05 vs. CLS -> CLS |

Gruppenvergleich der ROS-Produktion: T15 u. T30: IG erniedrigt vs. KG (p < 0,05).
Fortsetzung Tabelle 39: In die Informationssynthese eingeschlossene Studien zur Vitamin E-beschichteten Membran mit Erfassung des oxidativen Stresses: Ergebnisse.

<table>
<thead>
<tr>
<th>Quelle</th>
<th>Ergebnisse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tsuruoka 2002</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Erste Dialyse (1te)</td>
</tr>
<tr>
<td></td>
<td>T0</td>
</tr>
<tr>
<td></td>
<td>Leukozytenanzahl / µl (Werte aus Grafik)</td>
</tr>
<tr>
<td>IG</td>
<td>5200 Ca. 4100a</td>
</tr>
<tr>
<td>KG</td>
<td>5200 Ca. 4200a</td>
</tr>
<tr>
<td>Neutrophile / µl (Werte aus Grafik)</td>
<td></td>
</tr>
<tr>
<td>IG</td>
<td>Ca. 3800 Ca.2900a</td>
</tr>
<tr>
<td>KG</td>
<td>Ca. 3400 Ca. 900a</td>
</tr>
<tr>
<td>oxLDL (ng/µg LDLProtein) (Werte aus Grafik)</td>
<td></td>
</tr>
<tr>
<td>IG</td>
<td>Ca. 3 Ca.4.5a</td>
</tr>
<tr>
<td>KG</td>
<td>Ca. 2.9 Ca.4.1a</td>
</tr>
<tr>
<td>MDA</td>
<td>Ca. 5.3 Ca. 4.9</td>
</tr>
<tr>
<td>KG</td>
<td>Ca. 5.2 Ca. 5.1</td>
</tr>
<tr>
<td>Superoxidanion-Produktion (Zellen/h)</td>
<td></td>
</tr>
<tr>
<td>IG</td>
<td>0,229 pmol/3x10 K. A.</td>
</tr>
<tr>
<td>KG</td>
<td>0,220 pmol/6 x 10⁵ K. A.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Usberti 2002</th>
<th>Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>KG hohe EPO-Dosis</td>
</tr>
<tr>
<td>ROM (AUC)</td>
<td>282 ± 68a</td>
</tr>
<tr>
<td>MDA-4HNE (µmol/l)</td>
<td>1,74 ± 0,4c</td>
</tr>
<tr>
<td>Vit E (mmol/l)</td>
<td>33,9 ± 8,2cd</td>
</tr>
<tr>
<td>Vit E / Chol.</td>
<td>1,87 ± 0,77b</td>
</tr>
<tr>
<td>Vit E / TG</td>
<td>2,18 ± 0,52a</td>
</tr>
<tr>
<td>Thiole</td>
<td>318 ± 47</td>
</tr>
<tr>
<td>TAS</td>
<td>1,35 ± 0,23</td>
</tr>
<tr>
<td>TAS / UA</td>
<td>1,186 ± 0,04</td>
</tr>
<tr>
<td>Homozyztein</td>
<td>41,6 ± 33</td>
</tr>
<tr>
<td>Elastaseaktivität</td>
<td>4p < 0,05 vs. KG niedriges EPO</td>
</tr>
</tbody>
</table>

4.3.2.3 Zusammenfassende Beantwortung der Forschungsfragen zur medizinischen Bewertung

1. Kann der Einsatz der antioxidativen Vitamine A, C oder E bei Patienten ohne kardiovaskuläre Vorerkrankung, die eine erfolgte Nierentransplantation, eine chronische Niereninsuffizienz oder diabetischer Nephropathie aufweisen, das Auftreten von patientenrelevanten kardiovaskulären Erkrankungen und Todesfällen reduzieren (Wirksamkeit in der Primärprävention)?

Es konnten keine Studien bei Patienten ohne kardiovaskuläre Vorerkrankung nach Nierentransplantation, chronischer Niereninsuffizienz oder diabetischer Nephropathie identifiziert werden, die patientenrelevante, d. h. klinische Zielgrößen wie manifeste kardiovaskuläre Erkrankungen oder Todesfälle aufwiesen, identifiziert werden.

2. Kann der Einsatz der antioxidativen Vitamine A, C oder E bei Patienten mit kardiovaskuläre Vorerkrankung, die eine Nierentransplantation, eine chronische Niereninsuffizienz oder diabetische Nephropathie aufweisen, das Auftreten von patientenrelevanten kardiovaskulären Erkrankungen und Todesfällen reduzieren (Wirksamkeit in der Sekundärprävention)?

Die methodische Qualität dieser Studien war gut. Es handelte sich um doppelt verblindete randomisierte multizentrische Studien mit verdeckter Studienzuweisung und guter Planungs- und Durchführungsqualität.

3. Wie groß sind die erzielte Risikoreduktion und der Anteil der durch eine Prävention zu verhindern den Ereignisse in Primär- oder Sekundärprävention, falls jeweils ein reduzierender Effekt antioxidativer Vitamine nachweisbar ist?

In der einzigen Studie, in der ein protektiver Effekt von Vitamin E zur Sekundärprävention kardiovaskulärer Ereignisse bei Hämodialysepatienten nachgewiesen werden konnte (Boaz et al. 2000), betrug das relative Risiko, einen tödlichen, nichttödlichen Myokardinfarkt, Schlaganfall, eine periphere vaskuläre Erkrankung oder eine instabile Angina zu erleiden im Studienarm mit Vitamin E-Supplementation RR = 0,46 (95 %-KI: 0,27-0,78 p = 0,014), unter Einschluss plötzlicher Todesfälle RR = 0,54 (95 %-KI: 0,33-0,89 p = 0,016). Dies bedeutet, dass durch eine präventive Gabe von 800 IU Vitamin täglich E 54 % bzw. 46 % der Ereignisse zu verhindern wären, vorausgesetzt der Effekt ließe sich in weiteren Studien bestätigen.

4. In welcher Dosierung und Applikationsform erwiesen sich die genannten antioxidativen Vitamine einzeln oder in Kombination in der Primär- oder Sekundärprävention als wirksam, falls eine Wirksamkeit nachgewiesen werden konnte?

In der Studie von Boaz et al. (2000), die als einzige Studie einen protektiven Effekt aufweisen konnte, wurde eine Vitamin E-Dosierung von 800 IU/Tag, das entspricht 533 mg/Tag oral supplementiert.

Insgesamt wurden 17 Studien identifiziert, die entweder den Einfluss von oraler Vitamin E- oder Vitamin C-Supplementation oder intravenöser Vitamin C-Infusion (sechs Publikationen) oder den
Einfluss von Dialysemembranen mit gebundenem Vitamin E (zwölf Publikationen, eine davon in beiden Kategorien) auf Biomarker für oxidativen Stress oder Risikofaktoren für kardiovaskuläre Erkrankungen oder Gefäßveränderungen als Zielgrößen untersuchten.

Außer in einer Studie (Clermont et al. 2001) war die Vitaminsupplementation in allen Studien bei einer oder mehreren der untersuchten Zielgrößen mit einer Veränderung in der erwarteten Richtung zu beobachten, d. h. die Konzentrationen der Marker für oxidativen Stress nahmen in der Interventionsgruppe ab, die Progression der Kalzifizierung der Aorten (nur eine Studie, Mune et al. 1999) war geringer, die Intima-Media-Dicke (Kobayashi et al. 2003, Nakamura et al. 2003) nahm ab und das Lipidprofil zeigte positive Veränderungen (Khajedehi et al. 2000, Williams et al. 2001). Bei einem Großteil der Studien wurde die statistische Unsicherheit in Form von Hypothesentests nur für Prä-Post-Vergleiche innerhalb des jeweiligen Studienarms angegeben, jedoch nicht für den eigentlich relevanten Vergleich zwischen Interventions- und Kontrollgruppe.

4.3.3.2 Diskussion der Ergebnisse

jedoch, dass nicht auszuschließen ist, dass die berichteten Effekte durch Unterschiede zwischen Interventions- und Kontrollgruppe verzerrt sind.

4.3.3.3 Forschungsbedarf

4.4 Ökonomische Bewertung

4.4.1 Methodik

4.4.1.1 Ein- und Ausschlusskriterien
Antioxidative Vitamine zur Prävention kardiovaskulärer Erkrankungen nach Nierentransplantation und bei chronischer Niereninsuffizienz

Tabelle 40: Einschlusskriterien für Literaturstellen zur Bewertung der Wirtschaftlichkeit.

<table>
<thead>
<tr>
<th>Einschlusskriterien</th>
</tr>
</thead>
<tbody>
<tr>
<td>Systematische Übersichtsarbeiten und HTA-Berichte zur Wirtschaftlichkeit der Supplementation mit antioxidativen Vitaminen zur Prävention von kardiovaskulären Erkrankungen bei Patienten mit Nierentransplantation und chronischen Nierenerkrankungen. Primärstudien, bei denen alle folgende Kriterien bezüglich Studienpopulation, verglichener Technologien, Zielgrößen und Studientypen erfüllt sind</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studienpopulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patienten nach Nierentransplantation</td>
</tr>
<tr>
<td>Dialysepflichtige Patienten</td>
</tr>
<tr>
<td>Nicht-dialysepflichtige Patienten mit chronischen Nierenerkrankungen</td>
</tr>
<tr>
<td>Patienten mit diabetischer Nephropathie</td>
</tr>
<tr>
<td>Patienten der o. g. Gruppen sowohl mit als auch ohne kardiovaskuläre Vorerkrankung</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Technologien</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studien, in denen die Vitamine A, C, E entweder einzeln oder in Kombination mit genau definierter Dosierung in Form eines Supplementationspräparats verabreicht werden</td>
</tr>
<tr>
<td>Studien, in denen die Supplementation von Vitamin E bei Hämodialysepatienten über die Dialysemembran erfolgt</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Vergleichstechnologien in kontrollierten Studien</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verabreichung von Placebo bzw. der Einsatz von der bis auf die Vitamin E-Beschichtung identischen Dialysemembran</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zielgrößen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studien mit klinischen Endpunkten kardiovaskulärer Erkrankungen (Myokardinfarkte, kardiovaskulärer Tod, Schlaganfälle, Revaskularisierungen, periphere vaskuläre Erkrankung, Lebensqualität) oder der Gesamtmortalität mit einem Follow-Up von mindestens sechs Monaten</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studientypen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kostenstudien</td>
</tr>
<tr>
<td>Kostenminimierungsanalysen</td>
</tr>
<tr>
<td>Kostenkonsequenzanalysen</td>
</tr>
<tr>
<td>Kosteneffektivitätsanalysen</td>
</tr>
<tr>
<td>Kostennutzwertanalysen</td>
</tr>
<tr>
<td>Kostennutzenanalysen</td>
</tr>
</tbody>
</table>

Tabelle 41: Ausschlusskriterien für Literaturstellen zur Bewertung der Wirtschaftlichkeit.

<table>
<thead>
<tr>
<th>Ausschlusskriterien</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unsystematische Reviews</td>
</tr>
<tr>
<td>Doppelpublikationen ohne zusätzliche Information</td>
</tr>
<tr>
<td>Zusammenfassungen, für die keine Volltexte zur Verfügung stehen</td>
</tr>
</tbody>
</table>

Tabelle 42: Kostenkategorien bei Prävention kardiovaskulärer Erkrankungen mit antioxidativen Vitaminen.

<table>
<thead>
<tr>
<th>Direkte medizinische Kosten</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vitamingaben</td>
</tr>
<tr>
<td>Behandlung von CVD-Ereignissen (Myokardinfarkt, Schlaganfall, periphere vaskuläre Erkrankung)</td>
</tr>
<tr>
<td>Direkte nicht-medizinischen Kosten</td>
</tr>
<tr>
<td>Transport zur Diagnose und/oder Behandlung</td>
</tr>
<tr>
<td>Betreuung z. B. bei Schlaganfall</td>
</tr>
<tr>
<td>Indirekte Kosten (Produktionsausfall)</td>
</tr>
<tr>
<td>Arbeitsunfähigkeitsstage</td>
</tr>
</tbody>
</table>

CVD = Kardiovaskuläre Erkrankungen.
4.4.1.2 Datenquellen, Selektion, Aufbereitung und Bewertung der Information

4.4.1.2.1 Datenquellen

In die Recherche in den biomedizinischen Datenbanken zur medizinischen Wirksamkeit antioxidativer Vitamine (siehe oben) werden Recherchemodule zum Auffinden gesundheitsökonomischer Studientypen integriert. Siehe Anhang Zeilen 345 bis 381 der Dokumentation der Recherche.

4.4.1.2.2 Informationsselektion

4.4.1.2.3 Extraktion der Information

<table>
<thead>
<tr>
<th>1 Fragestellung und Evaluationsrahmen</th>
<th>3 Gesundheitseffekte</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 Technologie</td>
<td>(1) Primärstudie</td>
</tr>
<tr>
<td>1.2 Fragestellung</td>
<td>3.1 Untersuchte Zielgrößen</td>
</tr>
<tr>
<td>1.3 Perspektive</td>
<td>3.2 Ein- / Ausschlusskriterien</td>
</tr>
<tr>
<td>1.4 Zeithorizont</td>
<td>3.3 Rekrutierungsmodus</td>
</tr>
<tr>
<td>1.5 Art der ökonomischen Evaluation</td>
<td>3.4 Teilnahmerate</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2 Studiendesign und Studien- bzw. Zielpopulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 Studiendtyp</td>
</tr>
<tr>
<td>2.2 Datierung der zugrundeliegenden Daten</td>
</tr>
<tr>
<td>2.3 Studien- / Zielpopulation</td>
</tr>
<tr>
<td>2.4 Setting</td>
</tr>
<tr>
<td>2.5 Spezifikation der Technologie</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3 Gesundheitseffekte</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) Primärstudie</td>
</tr>
<tr>
<td>3.1 Untersuchte Zielgrößen</td>
</tr>
<tr>
<td>3.2 Ein- / Ausschlusskriterien</td>
</tr>
<tr>
<td>3.3 Rekrutierungsmodus</td>
</tr>
<tr>
<td>3.4 Teilnahmerate</td>
</tr>
<tr>
<td>3.5 Reproduzierbarkeit der Studienergebnisse</td>
</tr>
<tr>
<td>3.6 Auswertung der Studie</td>
</tr>
<tr>
<td>3.7 Drop-Outs</td>
</tr>
<tr>
<td>3.8 Ergebnisse der Studie</td>
</tr>
<tr>
<td>3.9 Effektmaße für die ökonomische Analyse</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3 Gesundheitseffekte</th>
</tr>
</thead>
<tbody>
<tr>
<td>(2) Synthese von Primärstudien</td>
</tr>
<tr>
<td>3.1 In der Synthese untersuchte klinische Parameter</td>
</tr>
<tr>
<td>3.2 Annahmen</td>
</tr>
<tr>
<td>3.3 Berücksichtigung von Primärstudien: Studiendesigns und Ein- / Ausschlusskriterien</td>
</tr>
<tr>
<td>3.4 Quellen und Suchstrategie bei der Literaturrecherche</td>
</tr>
<tr>
<td>3.5 Validitäts- bzw. Qualitätskriterien bei der Bewertung der Primärstudien</td>
</tr>
<tr>
<td>3.6 Methoden der Bewertung von Relevanz und Validität bzw. Qualität der Primärstudien</td>
</tr>
<tr>
<td>3.7 Methoden der Extraktion von Daten aus den Primärstudien</td>
</tr>
<tr>
<td>3.8 Anzahl berücksichtigter Primärstudien</td>
</tr>
<tr>
<td>3.9 Methode der Synthese der gesundheitsbezogenen Parameter</td>
</tr>
<tr>
<td>3.10 Untersuchung der Heterogenität der gesundheitsbezogenen Parameter</td>
</tr>
<tr>
<td>3.11 Ergebnisse der Synthese</td>
</tr>
<tr>
<td>3.12 Effektmaße für die ökonomische Analyse</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4 Kosten</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1 Berücksichtigte Ressourcenveränderungen</td>
</tr>
<tr>
<td>4.2 Beschreibung des Mengengerüsts</td>
</tr>
<tr>
<td>4.3 Monetäre Bewertung des Mengengerüsts</td>
</tr>
<tr>
<td>4.4 Währung</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5 Diskontierung</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>6 Ergebnisse</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1 Ermittelte Gesundheitseffekte</td>
</tr>
<tr>
<td>6.2 Ermittelte Kosten</td>
</tr>
<tr>
<td>6.3 Synthese von Kosten und Effekten</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7 Behandlung von Unsicherheiten</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>8. Diskussion und Schlussfolgerungen der Autoren</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1 Bemerkungen hinsichtlich Einschränkungen / Schwächen / Bias der Analyse</td>
</tr>
<tr>
<td>8.2 Bemerkungen hinsichtlich der Generalisierbarkeit der Ergebnisse (externe Validität)</td>
</tr>
<tr>
<td>8.3 Schlussfolgerungen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9 Kommentar</th>
</tr>
</thead>
</table>

| 10 Ähnliche Publikationen / Originalpublikationen / Technische Berichte (wenn vorhanden) |

Berücksichtigung von Nutzwerten (z. B. QALY), die berücksichtigten Kostenkomponenten, Art und Erhebung des Mengengerüsts, Art und Quelle der Preise, Währung und Bezugsjahr, Diskontierungsraten, Behandlung von Unsicherheiten (Variablen der Sensitivitätsanalysen) und die Autorenschlussfolgerungen. Außerdem werden die in den Publikationen diskutierten oder im Rahmen der Bewertung der Studienqualität aufgefallenen Biastypen systematisch dokumentiert.

Als quantitative Ergebnisparameter werden systematisch extrahiert und berichtet: Kosten (individuell oder populationsaggregiert), Effektivität, Kosteneffektivitätsrelation und durchschnittliche und / oder inkrementelle Werte für jede der in den einzelnen Studien untersuchten Vergleichstechnologien, soweit die Parameter jeweils in den Publikationen der berücksichtigten Studien vorhanden oder berechenbar sind.

Die qualitativen Studienmerkmale und die quantitativen Ergebnisparameter werden systematisch in Tabellenform zusammengestellt.

4.4.1.2.4 Bewertung der Studienqualität

4.4.1.3 Informationssynthese
4.4.1.3.1 Währungskonversion und Inflationsbereinigung

4.4.1.3.2 Tabellarische Zusammenfassung

Die relevanten ökonomischen Parameter der berücksichtigten Studien werden zum Vergleich systematisch zusammengefasst und tabellarisch gegenübergestellt. Neben der Angabe des zugrunde liegenden ökonomischen Studientyps sind dies die Art der eingeschlossenen Kosten und - sofern vorhanden - die inkrementellen Kosten, die inkrementelle Effektivität und die inkrementelle Kosten-efektivitätsrelation.

4.4.1.3.3 Übertragbarkeit auf das deutsche Gesundheitswesen

Bei der Prüfung der Übertragbarkeit werden das Setting bzw. der Kontext, in dem die Studien durchgeführt wurden, in Beziehung gesetzt zu den Gegebenheiten, wie sie für eine entsprechende Studie in Deutschland erwartet werden. Auf diese Weise sollen Studien, die auch für den deutschen Kontext
Antioxidative Vitamine zur Prävention kardiovaskulärer Erkrankungen nach Nierentransplantation und bei chronischer Niereninsuffizienz

aussagefähige Ergebnisse liefern (ohne in Deutschland durchgeführt worden zu sein), unterschieden werden von weniger gut auf den deutschen Kontext übertragbare Studien.

4.4.2 Ergebnisse

4.4.2.1 Ergebnis der systematischen Literaturrecherche und Selektion der Literaturstellen

4.4.2.2 Darstellung der ausgeschlossenen Studie zur Kosteneffektivität antioxidativer Vitamine

4.4.2.2.1 Fragestellung

4.4.2.2.2 Methodik

Zur Berechnung der Kosteneffektivität wurde eine Modellierung von Effekten und Kosten auf Basis eines RCT und Expertenbefragungen zu den Kosten im australischen Gesundheitssystem bzw. publizierten Kostendaten aus den USA durchgeführt.

4.4.2.2.3 Effekte

4.4.2.2.4 Kosten

die Vitaminsupplementation wurden anhand von Einzelhandelspreisen berechnet und mit 5% diskontiert.

Annamen für die Modellierung waren: Die Häufigkeit tödlicher kardiovaskulärer Ereignisse zwischen Vitamin E- und Kontrollgruppe unterscheiden sich nicht. Als durchschnittliche Dosis Vitamin E wurde 689 IU/Tag angenommen.

Univariate Sensitivitätsanalysen wurden für die wichtigsten Variablen (Krankenhausaufenthalt nach AMI, Vitamin E-Preise, alle Kosten außer Vitamin E) durchgeführt. Effektmaß der ökonomischen Analyse war die Anzahl zusätzlich vermiedener Myokardinfarkte.

4.4.2.2.5 Ergebnisse

4.4.2.2.6 Schlussfolgerung der Autoren

4.4.3 Diskussion
Antioxidative Vitamine zur Prävention kardiovaskulärer Erkrankungen nach Nierentransplantation und bei chronischer Niereninsuffizienz

Im Vordergrund steht jedoch zuerst die Frage der medizinischen Effektivität und gegebenenfalls auch von Nebenwirkungen von Vitamin E-Supplementationen bei Patienten mit chronischer Niereninsuffizienz und nach Nierentransplantation. Hier besteht noch Forschungsbedarf (siehe medizinische Bewertung).

4.5 Zusammenfassende Diskussion aller Ergebnisse

Eine zusammenfassende Diskussion erübrigt sich, da zur Wirtschaftlichkeit der Technologie keine Evidenz zur Verfügung steht.

4.6 Schlussfolgerung

Anhang

5.1 Abkürzungsverzeichnis

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Begriff</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-HNE</td>
<td>4-(hydroxy-2(E)-nonenal</td>
</tr>
<tr>
<td>8-OHdG</td>
<td>8-hydroxy-2'-deoxyguanosine</td>
</tr>
<tr>
<td>A</td>
<td>Ausschlusskriterien</td>
</tr>
<tr>
<td>ABI</td>
<td>Ankle Brachial Index</td>
</tr>
<tr>
<td>ACE</td>
<td>Angiotensin Converting Enzyme</td>
</tr>
<tr>
<td>ACI</td>
<td>Aortic Calcification Index, Aortenkalzifzierungsindex</td>
</tr>
<tr>
<td>AFR</td>
<td>Ascorbyl Free Radical</td>
</tr>
<tr>
<td>AGE</td>
<td>Advanced Glycosylation End Products</td>
</tr>
<tr>
<td>AHQR</td>
<td>Agency for Healthcare Research and Quality</td>
</tr>
<tr>
<td>AMI</td>
<td>Akuter Myokardinfarkt</td>
</tr>
<tr>
<td>AN</td>
<td>Synthetische Membran</td>
</tr>
<tr>
<td>ANOVA</td>
<td>Analysis of Variance</td>
</tr>
<tr>
<td>AOC</td>
<td>Antioxidant capacity, antioxidative Kapazität</td>
</tr>
<tr>
<td>ASO</td>
<td>Obliterierende Artheriosklerose</td>
</tr>
<tr>
<td>ATBC-Studien</td>
<td>Alpha-Tocopherol Beta Carotene Studien</td>
</tr>
<tr>
<td>AUC</td>
<td>Area Under the Curve</td>
</tr>
<tr>
<td>ausgeschl.</td>
<td>ausgeschlossen</td>
</tr>
<tr>
<td>AU</td>
<td>Arbitrary Units</td>
</tr>
<tr>
<td>BMI</td>
<td>Body Mass Index</td>
</tr>
<tr>
<td>BIP</td>
<td>Bruttoinlandsprodukt</td>
</tr>
<tr>
<td>BIP KKP</td>
<td>Bruttoinlandsprodukt-Kaufkraftparitäten</td>
</tr>
<tr>
<td>CA</td>
<td>Substituierte Zellulose</td>
</tr>
<tr>
<td>CDSR</td>
<td>Cochrane Database of Systematic Reviews</td>
</tr>
<tr>
<td>CHAOS</td>
<td>Studie</td>
</tr>
<tr>
<td>CHOD-PAD</td>
<td>Enzymatische Methode zur Cholesterin- und Cholesterinesterbestimmung</td>
</tr>
<tr>
<td>Chol.</td>
<td>Cholesterin</td>
</tr>
<tr>
<td>CL</td>
<td>Zellulosemembran</td>
</tr>
<tr>
<td>CLS</td>
<td>Zellulosemembran</td>
</tr>
<tr>
<td>CLE</td>
<td>Vitamin E beschichtete Membran</td>
</tr>
<tr>
<td>CRP</td>
<td>C-reaktives Protein</td>
</tr>
<tr>
<td>CU</td>
<td>Reine Zellulosemembran</td>
</tr>
<tr>
<td>CVD</td>
<td>Cardiovascular Diseases, kardiovaskuläre Erkrankungen</td>
</tr>
<tr>
<td>cP</td>
<td>centi Poise</td>
</tr>
<tr>
<td>DAHTA</td>
<td>Deutsche Agentur für Health Technology Assessment</td>
</tr>
<tr>
<td>DARE</td>
<td>Database of Abstracts of Reviews of Effects</td>
</tr>
<tr>
<td>dG</td>
<td>deoxyguanosine</td>
</tr>
<tr>
<td>Dia</td>
<td>Diastolisch</td>
</tr>
</tbody>
</table>
Fortsetzung: Abkürzungsverzeichnis

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Deutsches Institut für Medizinische Information und Dokumentation</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIMDI</td>
<td>Dysmorphismus roter Blutkörperchen</td>
</tr>
<tr>
<td>DMR</td>
<td>Deoxyribonucleic Acid</td>
</tr>
<tr>
<td>d. u.</td>
<td>Densometric Units</td>
</tr>
<tr>
<td>E</td>
<td>Einschlusskriterien</td>
</tr>
<tr>
<td>EBM</td>
<td>Einheitlicher Bewertungsmaßstab</td>
</tr>
<tr>
<td>EDD</td>
<td>Endothelabhängige Vasodilatation</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethyldiamintetraessigsäure</td>
</tr>
<tr>
<td>EN</td>
<td>Evidenzniveau</td>
</tr>
<tr>
<td>Eingeschl.</td>
<td>eingeschlossen</td>
</tr>
<tr>
<td>Erh.</td>
<td>erhöht</td>
</tr>
<tr>
<td>EPO</td>
<td>Erythropoetin</td>
</tr>
<tr>
<td>EUR</td>
<td>Euro</td>
</tr>
<tr>
<td>F</td>
<td>Frauen</td>
</tr>
<tr>
<td>g</td>
<td>Gramm</td>
</tr>
<tr>
<td>gem.</td>
<td>gemessen</td>
</tr>
<tr>
<td>G-DRG</td>
<td>German Diagnosis Related Groups</td>
</tr>
<tr>
<td>GFR</td>
<td>Glomuläre Filtrationsrate</td>
</tr>
<tr>
<td>GG</td>
<td>Gesamtheit der Studienpopulation</td>
</tr>
<tr>
<td>G /dl</td>
<td>Gramm / Deziliter</td>
</tr>
<tr>
<td>G / l</td>
<td>Gramm / Liter</td>
</tr>
<tr>
<td>Gislisi-Studie</td>
<td>Studie der „Gruppo Italiano per lo Studio della Sopravvivenza nell'Infarto miocardio“</td>
</tr>
<tr>
<td>GOA</td>
<td>Gebürnenordnung für Ärzte</td>
</tr>
<tr>
<td>GTN</td>
<td>nitroglycerininduzierte endothelunabhängigen Vasodilatation</td>
</tr>
<tr>
<td>h</td>
<td>Stunde</td>
</tr>
<tr>
<td>Hcy</td>
<td>Homocystein</td>
</tr>
<tr>
<td>HR</td>
<td>Hazard Ratio</td>
</tr>
<tr>
<td>HD</td>
<td>Hämodialyse</td>
</tr>
<tr>
<td>HD-A Alter</td>
<td>Hämodialysealter</td>
</tr>
<tr>
<td>HD P</td>
<td>Hämodialysepatienten</td>
</tr>
<tr>
<td>HDL</td>
<td>High Density Lipoprotein</td>
</tr>
<tr>
<td>HDL-c</td>
<td>High Density Lipoprotein Cholesterol</td>
</tr>
<tr>
<td>hMTH1</td>
<td>human MutT homologe</td>
</tr>
<tr>
<td>HO1</td>
<td>Hämoxigenase</td>
</tr>
<tr>
<td>hOGG1</td>
<td>8-oxoguanine-DNA-Glykosylase</td>
</tr>
<tr>
<td>HOPE</td>
<td>Heart Outcomes Prevention Evaluation (Studie)</td>
</tr>
<tr>
<td>HOPE TOO</td>
<td>Heart Outcomes Prevention Evaluation Study Extension</td>
</tr>
<tr>
<td>HPLC</td>
<td>High Pressure Liquid Chromatography</td>
</tr>
<tr>
<td>HPO</td>
<td>Hydroperoxide</td>
</tr>
</tbody>
</table>
Fortsetzung: Abkürzungsverzeichnis

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>HR</td>
<td>Hazard Ratio</td>
</tr>
<tr>
<td>HTA</td>
<td>Health Technology Assessment</td>
</tr>
<tr>
<td>IG</td>
<td>Interventionsgruppe</td>
</tr>
<tr>
<td>IgA</td>
<td>Antikörper</td>
</tr>
<tr>
<td>IL</td>
<td>Interleukin</td>
</tr>
<tr>
<td>IMT</td>
<td>Intima Media Dicke</td>
</tr>
<tr>
<td>INAH TA</td>
<td>International Network of Agencies for Health Technology Assessment</td>
</tr>
<tr>
<td>Inf.</td>
<td>Infusion</td>
</tr>
<tr>
<td>Intrav.</td>
<td>Intravenös</td>
</tr>
<tr>
<td>iNOS</td>
<td>Induzierbare NO-Synthase</td>
</tr>
<tr>
<td>IU</td>
<td>Internationale Einheiten</td>
</tr>
<tr>
<td>i. v.</td>
<td>in vitro</td>
</tr>
<tr>
<td>JNK</td>
<td>Jun N-terminale Kinase</td>
</tr>
<tr>
<td>K / DOQI</td>
<td>National Kidney Foundation</td>
</tr>
<tr>
<td>K. A.</td>
<td>Keine Angabe</td>
</tr>
<tr>
<td>kardiovask.</td>
<td>kardiovaskulär</td>
</tr>
<tr>
<td>KG</td>
<td>Kontrollgruppe</td>
</tr>
<tr>
<td>Kg / m²</td>
<td>Kilogramm / Quadratmeter</td>
</tr>
<tr>
<td>KHK</td>
<td>Koronare Herzerkrankung</td>
</tr>
<tr>
<td>KI</td>
<td>Konfidenzintervall</td>
</tr>
<tr>
<td>KKP</td>
<td>Kaufkraftparitäten</td>
</tr>
<tr>
<td>K-Studie</td>
<td>Kurzzeitstudie</td>
</tr>
<tr>
<td>KV</td>
<td>Kardiovaskulär</td>
</tr>
<tr>
<td>KVM</td>
<td>Konventionelle (synthetische oder Zellulose-) Vergleichsmembran ohne gebundenes Vitamin E</td>
</tr>
<tr>
<td>Kt / V</td>
<td>Dialysequantifizierungsindex</td>
</tr>
<tr>
<td>L-Studie</td>
<td>Langzeitstudie</td>
</tr>
<tr>
<td>l</td>
<td>Liter</td>
</tr>
<tr>
<td>LDL</td>
<td>Low Density Lipoprotein</td>
</tr>
<tr>
<td>LDL-c</td>
<td>Low Density Lipoprotein Cholesterol</td>
</tr>
<tr>
<td>Lsg</td>
<td>Lösung</td>
</tr>
<tr>
<td>MACE</td>
<td>Major Adverse Cardiac Events</td>
</tr>
<tr>
<td>MACCE</td>
<td>Major Adverse Cardiac and Cerebrovascular Events</td>
</tr>
<tr>
<td>MDA</td>
<td>Malondialdehyd</td>
</tr>
<tr>
<td>mg</td>
<td>Milligramm</td>
</tr>
<tr>
<td>mg / dl</td>
<td>Milligram / Deziliter</td>
</tr>
<tr>
<td>µg / l</td>
<td>Mikrogram / Liter</td>
</tr>
<tr>
<td>MI</td>
<td>Myokardinfarkt</td>
</tr>
<tr>
<td>Min</td>
<td>Minute</td>
</tr>
</tbody>
</table>
Fortsetzung: Abkürzungsverzeichnis

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Bedeutung</th>
</tr>
</thead>
<tbody>
<tr>
<td>MICRO-HOPE Study</td>
<td>Microalbuminuria, cardiovascular, and renal outcomes. Heart Outcomes Prevention Evaluation</td>
</tr>
<tr>
<td>ml / s</td>
<td>Milliliter / Sekunde</td>
</tr>
<tr>
<td>µl</td>
<td>Mikroliter</td>
</tr>
<tr>
<td>mmol / l</td>
<td>Millimol / Liter</td>
</tr>
<tr>
<td>µmol / l</td>
<td>Mikromol / Liter</td>
</tr>
<tr>
<td>Mo</td>
<td>Monate</td>
</tr>
<tr>
<td>mU / ml</td>
<td>mikroUnits / Milliliter</td>
</tr>
<tr>
<td>MW</td>
<td>Mittelwert</td>
</tr>
<tr>
<td>NaCl</td>
<td>Natriumchlorid</td>
</tr>
<tr>
<td>NADPH</td>
<td>Nicotinamid-adenin-dinucleotid-Phosphat</td>
</tr>
<tr>
<td>NADH</td>
<td>Nicotinamid-adenin-dinucleotid reduziert</td>
</tr>
<tr>
<td>N, n</td>
<td>Anzahl</td>
</tr>
<tr>
<td>NEED</td>
<td>National Economic Evaluation Database</td>
</tr>
<tr>
<td>NHS-CRD-HTA</td>
<td>National Health Service - Centre for Reviews and Dissemination - Health Technology Assesment</td>
</tr>
<tr>
<td>NHS-EED</td>
<td>National Health Service-Economic Evaluation Database</td>
</tr>
<tr>
<td>N IG</td>
<td>Anzahl eingeschlossener Patienten in der Interventionsgruppe</td>
</tr>
<tr>
<td>N KG</td>
<td>Anzahl eingeschlossener Patienten in der Kontrollgruppe</td>
</tr>
<tr>
<td>Nmоль / ml</td>
<td>Nanomol / Milliliter</td>
</tr>
<tr>
<td>NO</td>
<td>Stickstoffmonoxid</td>
</tr>
<tr>
<td>N. s.</td>
<td>nicht-signifikant</td>
</tr>
<tr>
<td>OECD</td>
<td>Organisation for Economic Co-operation and Development</td>
</tr>
<tr>
<td>QALY</td>
<td>Qualitätsadjustierte Lebensjahre</td>
</tr>
<tr>
<td>Ox LDL</td>
<td>Oxidierte Low Density Lipoproteine</td>
</tr>
<tr>
<td>oxLDL-Ab</td>
<td>Autoantikörper gegen oxidiertes LDL</td>
</tr>
<tr>
<td>P</td>
<td>Patient</td>
</tr>
<tr>
<td>PAV</td>
<td>periphere arterielle Verschlusskrankheit</td>
</tr>
<tr>
<td>PBMC</td>
<td>periphere mononukleare Blutzellen</td>
</tr>
<tr>
<td>plötzl.</td>
<td>plötzlich</td>
</tr>
<tr>
<td>PMA</td>
<td>Phorbol-12-Myristate-13-Acetat</td>
</tr>
<tr>
<td>PMMA</td>
<td>Polymethylmetacrylatemembran</td>
</tr>
<tr>
<td>PMN</td>
<td>Polymorphonukleare Leukozyten</td>
</tr>
<tr>
<td>pmol</td>
<td>Picomol</td>
</tr>
<tr>
<td>pmp</td>
<td>pro Million Einwohner</td>
</tr>
<tr>
<td>Polyzyst. Nierenerkr</td>
<td>polyzystische Nierenerkrankung</td>
</tr>
<tr>
<td>Post transpl.</td>
<td>post transplantation</td>
</tr>
<tr>
<td>PostHD</td>
<td>Nach der Hämodialyse</td>
</tr>
<tr>
<td>PreHD</td>
<td>Vor der Hämodialyse</td>
</tr>
<tr>
<td>PS</td>
<td>Polysulfonmembran</td>
</tr>
<tr>
<td>PWV</td>
<td>Pulswellengeschwindigkeit</td>
</tr>
</tbody>
</table>
Fortsetzung: Abkürzungsverzeichnis

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>QUORUM</td>
<td>Quality of Reporting of Meta-analyses</td>
</tr>
<tr>
<td>RBC</td>
<td>red blood cell</td>
</tr>
<tr>
<td>RCT</td>
<td>Randomisierte kontrollierte Studie</td>
</tr>
<tr>
<td>RDW-SD (Erythrozytenverteilungsbreite)</td>
<td>red cell distribution width –standard deviation</td>
</tr>
<tr>
<td>Red.</td>
<td>Reduziert</td>
</tr>
<tr>
<td>RNA</td>
<td>Ribonucleic acid</td>
</tr>
<tr>
<td>mRNA</td>
<td>messenger ribonucleic acid</td>
</tr>
<tr>
<td>mRNA-hOGG1</td>
<td>8-oxoguanine-DNA-Glykosylase (durch Spleissen der mRNA)</td>
</tr>
<tr>
<td>ROM</td>
<td>reactive oxygen molecules</td>
</tr>
<tr>
<td>ROS</td>
<td>Reaktive Sauerstoffspezies</td>
</tr>
<tr>
<td>RR</td>
<td>Relatives Risiko</td>
</tr>
<tr>
<td>SD</td>
<td>Standard Deviation (Standardabweichung)</td>
</tr>
<tr>
<td>SGB</td>
<td>Sozialgesetzbuch</td>
</tr>
<tr>
<td>SH</td>
<td>Thiolen</td>
</tr>
<tr>
<td>SLE</td>
<td>Systemischer Lupus erythematosides</td>
</tr>
<tr>
<td>SOD</td>
<td>Superoxid-Dismutase</td>
</tr>
<tr>
<td>SPACE</td>
<td>Secondary Prevention with Antioxidants of Cardiovascular Disease in Endstage Renal Disease (Studie)</td>
</tr>
<tr>
<td>Stat.</td>
<td>Statistisch</td>
</tr>
<tr>
<td>Sys</td>
<td>Systolisch</td>
</tr>
<tr>
<td>TAS</td>
<td>Totaler antioxidativer Status</td>
</tr>
<tr>
<td>TBA</td>
<td>Thiobarbitursäure</td>
</tr>
<tr>
<td>TBARS</td>
<td>Thiobarbitursäure reaktive Substanzen</td>
</tr>
<tr>
<td>TG</td>
<td>Triglyceride</td>
</tr>
<tr>
<td>TM</td>
<td>Thrombomodulin</td>
</tr>
<tr>
<td>tödl.</td>
<td>Tödlich</td>
</tr>
<tr>
<td>TSAT</td>
<td>Transferrinsättigung</td>
</tr>
<tr>
<td>USA</td>
<td>Vereinigte Staaten von Amerika</td>
</tr>
<tr>
<td>Vit</td>
<td>Vitamin</td>
</tr>
<tr>
<td>vs.</td>
<td>versus</td>
</tr>
<tr>
<td>vWF</td>
<td>von Willebrandfaktor</td>
</tr>
<tr>
<td>VPI</td>
<td>Verbraucherpreisindex</td>
</tr>
<tr>
<td>WBC</td>
<td>Weiße Blutkörperchen</td>
</tr>
<tr>
<td>Wo</td>
<td>Wochen</td>
</tr>
</tbody>
</table>
5.2 Glossar

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>8-oxoguanine-DNA-Glykosylase</td>
<td>Initialenzym zur Reparatur oxidative geschädigter DNA-Stränge.</td>
</tr>
<tr>
<td>Akzeleriert</td>
<td>Beschleunigt</td>
</tr>
<tr>
<td>Anämie</td>
<td>Blutarmut, genauer: Mangel an roten Blutkörperchen</td>
</tr>
<tr>
<td>Angiotensin Converting Enzyme (ACE)</td>
<td>Das Enzym spaltet Angiotensin I in das Angiotensin II, dessen Konzentration Einfluß auf den Blutgefäßenoton nimmt.</td>
</tr>
<tr>
<td>Ankle Brachial Index (ABI)</td>
<td>Quotient aus Blutdruck am Unterschenkel zu Blutdruck am Oberarm.</td>
</tr>
<tr>
<td>Aortic calcification index</td>
<td>Index der Kalzifizierung der Gefäße, der zumeist mit Ultraschall gemessen wird.</td>
</tr>
<tr>
<td>arbitrary units (AU)</td>
<td>Willkürliche Einheit</td>
</tr>
<tr>
<td>area under the curve (AUC)</td>
<td>Fläche unter der Kurve die sich aus dem Verhältnis zweier Größen bildet.</td>
</tr>
<tr>
<td>Azotämie</td>
<td>Abnorme Vermehrung von stickstoffhaltigen Endprodukten des Proteinstoffwechsels.</td>
</tr>
<tr>
<td>Body Mass Index (BMI)</td>
<td>Verhältniszahl aus dem Körpergewicht (kg) dividiert durch das Quadrat der Körpergröße (cm).</td>
</tr>
<tr>
<td>C5b-9</td>
<td>Komplementkomplex</td>
</tr>
<tr>
<td>centi Poise</td>
<td>Maß für dynamische Viskosität.</td>
</tr>
<tr>
<td>Concealment</td>
<td>Verdeckung der Gruppenzugehörigkeit.</td>
</tr>
<tr>
<td>Cox-Modell</td>
<td>Regressionsmethode zur Analyse von Überlebensdaten.</td>
</tr>
<tr>
<td>C-reaktives Protein</td>
<td>Von der Leber gebildeter Entzündungsparameter.</td>
</tr>
<tr>
<td>Diastolisch</td>
<td>Unterster Wert des Blutdrucks.</td>
</tr>
<tr>
<td>Diffusion</td>
<td>Stoffaustausch in Flüssigkeiten oder Gasen von der höheren zur niedrigeren Konzentration durch eine poröse Wand oder durch eine Membran.</td>
</tr>
<tr>
<td>Dysmorphismus roter Blutkörperchen</td>
<td>Anteil an deformierten roten Blutkörperchen.</td>
</tr>
<tr>
<td>Dropouts</td>
<td>Der Begriff bezeichnet Patienten, die eine Studie vorzeitig abgebrochen haben.</td>
</tr>
<tr>
<td>Eligibel</td>
<td>Geeignet</td>
</tr>
<tr>
<td>Endothel</td>
<td>Zellen der obersten Arterienwandschicht (Intima).</td>
</tr>
</tbody>
</table>
Antioxidative Vitamine zur Prävention kardiovaskulärer Erkrankungen nach Nierentransplantation und bei chronischer Niereninsuffizienz

Fortsetzung: Glossar

Endothelabhängige Vasodilatation | Erweiterung der Blutgefäße aufgrund vom Endothel freigesetzter Substanzen, z. B. Stickstoffmonoxid.

Erythropoetin | Ein von der Niere produziertes Glykoprotein-Hormon, das als Wachstumsfaktor für die Bildung roter Blutkörperchen (Erythrozyten) während der Blutbildung fungiert.

Erythrozytenverteilungsbreite (Standardabweichung) | Maß für die Anisozytose (ungleiche Größenverteilung von normalerweise gleich großen Erythrozyten).

Erythrozyturie | Blutausscheidung (Erythrozyten) mit dem Urin.

Evidenzniveau | Kategoriebezeichnung einer medizinischen Studie, die hinsichtlich ihrer methodischen Qualität nach den Grundlagen der „erkenntnisbasierten Medizin“ (EBM) beurteilt wurde.

Glukosurie | Urinzucker, Überschuss an Zucker, der über den Urin ausgeschieden wird.

Hämoxigenase | Im Prozess des Hämabbaus zu Bilirubin beteiligtes Enzym.

Hazard Ratio | Wahrscheinlichkeit für das Eintreten eines Ereignisses unter Berücksichtigung der Überlebenszeit.

Hereditär | Erblich.

High density lipoprotein | Transportmolekül für Cholesterin.

High density lipoprotein cholesterol | Transportmolekül für Cholesterin, gebunden an Cholesterin.

Human MutT homologe | Menschliche mutT Homologe, ist an der Verhinderung der Einbindung von 8-oxo-dGTP (8-Oxo-2'-deoxyguanosine 5'-triphosphate, ein Produkt oxidativer Modifikation) in die DNA beteiligt.
Fortsetzung: Glossar

IgA-Nephritis Form der Nephritis, die unter Bildung von Antikörpern eine Entzündung und in der Folge eine Funktionseinschränkung der Nieren herbeiführt.

Induzierbare NO Synthase Verantwortliches Enzym für die Produktion großer Mengen an Stickstoffmonoxid (NO), das für viele zytotoxische Effekte verantwortlich ist.

intention to treat Jeder in eine Studie aufgenommene Patient wird entsprechend der ihm als Ergebnis der Randomisierung zugewiesenen Gruppenzugehörigkeit ausgewertet.

Interleukin Proinflammatorische (entzündungsfördernde) Zytokine.

Jun N-terminalen Kinase Mitogen-aktivierte Proteinkinase, die durch Stressfaktoren mittels Phosphorylierung aktiviert wird.

Kaufkraftparitäten (KKP) Die KKP gibt an, wie viel Einheiten der jeweiligen Währung erforderlich sind, um den gleichen repräsentativen Waren- und Dienstleistungskorb zu kaufen, den man für 1 US-Dollar in den USA erhalten könnte.

Kongenital Angeboren

Konsumtion Verbrauch

Konvektion Transport von Stoffen oder physikalischen Eigenschaften durch die Bewegung von Teilchen, hervorgerufen meist durch Wärme.

Kt / V Dialysequantifizierungsindex; Größe aus Clearenceleistung des Dialysators (K), der Behandlungszeit in Minuten (t) und des Verteilungsvolumens in Liter (V).

lagtime Verzögerung

Leukozyturie Leukozytenausscheidung mit dem Urin.

low density lipoprotein Transportmolekül für Cholesterin.

low density lipoprotein cholesterol Transportmolekül für Cholesterin, gebunden an Cholesterin.

MACCE Schwere unerwünschte kardiale und zerebrovaskuläre Ereignisse.

MACE Schwere unerwünschte kardiale Ereignisse.
Fortsetzung: Glossar

<table>
<thead>
<tr>
<th>Begriff</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matching</td>
<td>Paarbildung nach bestimmten Kriterien, z. B. Alter, Geschlecht, Raucher, etc..</td>
</tr>
<tr>
<td>Malnutrition</td>
<td>Fehlemährung</td>
</tr>
<tr>
<td>Malondialdehyd</td>
<td>Sekundäres Lipidperoxidationsprodukt.</td>
</tr>
<tr>
<td>Mikrozirkulation</td>
<td>Blutfluss im System der feinsten Blutgefäße mit einem Durchmesser kleiner als 100 µm</td>
</tr>
<tr>
<td>Monocyte p22phox</td>
<td>Wachstumsfaktor, eine Untergruppe des NADH / NADPH-Systems.</td>
</tr>
<tr>
<td>Motilität</td>
<td>Bewegungsvermögen</td>
</tr>
<tr>
<td>Nitroglycerininduzierte endothelunabhängige Vasodilatation</td>
<td>Erweiterung der Blutgefäße aufgrund von Gaben von Nitroglycerin.</td>
</tr>
<tr>
<td>Obliterierende Artheriosklerose</td>
<td>Verschließen von Gefäßen durch fortschreitende Artheriosklerose.</td>
</tr>
<tr>
<td>Osmose</td>
<td>Diffusion eines Lösungsmittels mit geringerer Konzentration an gelösten Stoffen durch eine semipermeable Membran in Richtung der höheren Konzentration an gelösten Stoffen.</td>
</tr>
<tr>
<td>Periphere arterielle Verschlusskrankheit</td>
<td>Krankhafte Verengung der Arterien der Extremitäten.</td>
</tr>
<tr>
<td>Periphere mononukleare Blutzellen</td>
<td>Einkernige Blutzellen aus der Blutbahn.</td>
</tr>
<tr>
<td>Polyzystische Nierenerkrankung</td>
<td>Von vielen Zysten durchsetzte Niere.</td>
</tr>
<tr>
<td>Post-Hoc-Analyse</td>
<td>Nachträgliche statistische Auswertung von Studienergebnissen, die zu Beginn der Studie nicht beabsichtigt war.</td>
</tr>
<tr>
<td>Proteinurie</td>
<td>Überhöhte Proteinausscheidung mit dem Urin.</td>
</tr>
<tr>
<td>publication bias</td>
<td>Verzerrung des Effektschätzers durch bevorzugte Publikation von Studien, die statistisch signifikante Effekte berichten</td>
</tr>
<tr>
<td>PWV</td>
<td>Pulswellengeschwindigkeit, die Versteifung der Arterien gemessen an der Geschwindigkeit des arteriellen Pulses.</td>
</tr>
<tr>
<td>Revaskularisation</td>
<td>Chirurgischer Eingriff zur Wiederherstellung des Blutstroms / der Blutstrombahn. Im Kontext mit kardiovaskulären Erkrankungen perkutane transluminale Angioplastie und Bypassoperationen</td>
</tr>
</tbody>
</table>
Fortsetzung: Glossar

Reverse epidemiology Ein in der Allgemeinbevölkerung etablierter Risikofaktor zeigt nicht mehr die bekannte Beziehung zur Erkrankung

Scavenger-Rezeptoren Radikalfänger

Singluett Sauerstoff Der Zustand eines Sauerstoffmoleküls, dessen Spin der ungepaarten Elektronen entgegengesetzt gerichtet ist. Der Singluett Sauerstoff ist nicht radikalisch, aber sehr reaktiv.

Systemischer Lupus erythematodes Autoimmunerkrankung

Systolisch Höchster Wert des Blutdrucks.

Thiobarbitursäure reaktive Substanzen Substanzen, vorwiegend das Malondialdehyd, die mit zugesetzter Thiobarbitursäure, einem fluoreszierenden Farbstoff reagieren.

Thrombomodulin Prothrombotische und antithrombotische membranständiger Rezeptor, der als Marker für eine Endothelschädigung fungiert.

Totale antioxidative Kapazität Summe der lipidlöschlichen und der wasserlöslichen Antioxidantien.

Transferrinsättigung Sättigungszustand des Transportproteins Transferrin durch Eisen.

Triglyceride Blutfette

Ultrafiltration Verfahren der Filtration mit Hilfe von zumeist semipermeablen Membranen, die in Modulen zusammengefasst sind. Dabei werden hochmolekulare Stoffe mit einer Partikelgröße von etwa 0,1 bis 0,01 µm zurückgehalten.

Vaskulitiden Erkrankung der Nierenblutgefäße

Vasodilatation Erschlaffung der glatten Gefäßmuskulatur, die zu einer Erweiterung der Blutgefäße führt.

Wash-out-Phase Auswaschphase zwischen zwei verschiedenen Interventionen, um die eventuelle anhaltende Wirkung der ersten Intervention auszuschließen.

Zytokine Gewebshormone, die als Botenstoffe fungieren und für die Kommunikation zwischen Zellen verantwortlich sind. Unterschieden werden proinflammatorische (entzündungsfördernde) und antiinflammatorische (entzündungshemmende) Zytokine.
5.3 Tabellenverzeichnis

Tabelle 1: Stadien der Niereninsuffizienz.. 10
Tabelle 2: Mögliche Zielgrößen in Studien zur Wirkung antioxidativer Vitamine auf kardiovaskuläre Erkrankungen.. 21
Tabelle 3: Einschlusskriterien für Literaturstellen zur Bewertung der medizinischen Wirksamkeit... 22
Tabelle 4: Ausschlusskriterien für Literaturstellen zur Bewertung der medizinischen Wirksamkeit... 23
Tabelle 5: Evidenzhierarchie von Studientypen Fragestellungen zur Effektivität von medizinischen Interventionen (nach Khan et al. 2003)... 24
Tabelle 6: Aus der Literatursynthese ausgeschlossene Studien mit Ausschlussgründen................................. 25
Tabelle 7: Studiendesign der eingeschlossenen Literaturstellen geordnet nach Evidenzniveau............................ 25
Tabelle 8: Übersicht über die Zielgrößen der Studien zur oralen Supplementation mit antioxidativen Vitaminen.. 26
Tabelle 9: In die Informationssynthese eingeschlossene Studien zur oralen Supplementation mit antioxidativen Vitaminen.. 28
Tabelle 10: In die Informationssynthese eingeschlossene Studien zur Vitaminsupplementation mit klinischen Zielgrößen: Studiendesign I.. 29
Tabelle 11: In die Informationssynthese eingeschlossene Studien zur Vitaminsupplementation mit klinischen Zielgrößen: Studiendesign II... 30
Tabelle 12: In die Informationssynthese eingeschlossene Studien zur Vitaminsupplementation mit Zielgrößen zu Gefäßveränderungen: Studiendesign I.......... 30
Tabelle 13: In die Informationssynthese eingeschlossene Studien zur Vitaminsupplementation mit Zielgrößen zu Gefäßveränderungen: Studiendesign II... 31
Tabelle 14: In die Informationssynthese eingeschlossene Studien zur Vitaminsupplementation mit oxidativem Stress: Studiendesign I.. 31
Tabelle 15: In die Informationssynthese eingeschlossene Studien zur Vitaminsupplementation mit oxidativem Stress: Studiendesign II.. 31
Tabelle 16: In die Informationssynthese eingeschlossene Studien zur Vitaminsupplementation mit klinischen Zielgrößen: Patientencharakteristika.. 33
Tabelle 17: In die Informationssynthese eingeschlossene Studien zur Vitaminsupplementation mit klinischen Zielgrößen: Intervention, Begleitmedikation und Zielgrößen... 33
Tabelle 18: In die Informationssynthese eingeschlossene Studien zur Vitaminsupplementation mit Zielgrößen zu Gefäßveränderungen: Patientencharakteristika... 34
Tabelle 19: In die Informationssynthese eingeschlossene Studien zur Vitaminsupplementation mit Zielgrößen zu Gefäßveränderungen: Intervention, Begleitmedikation und Zielgrößen... 34
Tabelle 20: In die Informationssynthese eingeschlossene Studien zur Vitaminsupplementation und oxidativem Stress: Patientencharakteristika.. 35
Tabelle 21: In die Informationssynthese eingeschlossene Studien zur Vitaminsupplementation und oxidativem Stress: Intervention, Begleitmedikation und Zielgrößen... 35
Tabelle 22: In die Informationssynthese eingeschlossene Studien zur Vitaminsupplementation mit klinischen Zielgrößen: Ergebnisse.. 39
Tabelle 23: In die Informationssynthese eingeschlossene Studien zur Vitaminsupplementation mit Zielgrößen zu Gefäßveränderungen: Ergebnisse.. 41
Tabelle 24: In die Informationssynthese eingeschlossene Studien zur Vitaminsupplementation und oxidativem Stress: Ergebnisse.. 43
Tabelle 25: In die Informationssynthese eingeschlossene Studien mit Vitamin- E-beschichteten Dialysemembranen .. 44
Antioxidative Vitamine zur Prävention kardiovaskulärer Erkrankungen nach Nierentransplantation und bei chronischer Niereninsuffizienz

Fortsetzung: Tabellenverzeichnis

Tabelle 26: Übersicht über die Zielgrößen der Studien mit Vitamin-E-beschichteten Dialysemembranen. ... 46

Tabelle 27: In die Informationssynthese eingeschlossene Studien zur Vitamin E-beschichteten Membran mit Zielgrößen zu Gefäßveränderungen: Studiendesign I................................. 47

Tabelle 28: In die Informationssynthese eingeschlossene Studien zur Vitamin E-beschichteten Membran mit Zielgrößen zu Gefäßveränderungen: Studiendesign II................................. 47

Tabelle 29: In die Informationssynthese eingeschlossene Studien zur Vitamin E-beschichteten Membran mit Erfassung des oxidativen Stresses: Studiendesign I.................................. 47

Tabelle 30: In die Informationssynthese eingeschlossene Studien zur Vitamin E-beschichteten Membran mit Erfassung des oxidativen Stresses: Studiendesign II................................. 48

Tabelle 31: In den Studien verwendete Dialysemembranen .. 50

Tabelle 32: In die Informationssynthese eingeschlossene zur Vitamin E-beschichteten Membran mit Zielgrößen zu Gefäßveränderungen: Intervention, Begleitmedikation und Zielgrößen. ... 51

Tabelle 33: In die Informationssynthese eingeschlossene Studien zur Vitamin E-beschichteten Membran mit Erfassung des oxidativen Stresses: Intervention, Begleitmedikation und Zielgrößen. ... 52

Tabelle 34: In die Informationssynthese eingeschlossene Studien zur Vitamin E-gebundenen Membran mit Zielgrößen zu Gefäßveränderungen: Patientencharakteristika 53

Tabelle 35: In die Informationssynthese eingeschlossene Studien zur Vitamin E-beschichteten Membran mit Erfassung des oxidativen Stresses: Patientencharakteristika. 53

Tabelle 36: Gesamtüberblick der verwendeten Messmethoden von Biomarkern in allen Studien. 57

Tabelle 37: Verschiedenartigkeit der Messmethoden von Biomarkern am Beispiel von MDA. 59

Tabelle 38: In die Informationssynthese eingeschlossene Studien zur Vitamin E-beschichteten Membran mit Zielgrößen zu Gefäßveränderungen: Ergebnisse. 61

Tabelle 39: In die Informationssynthese eingeschlossene Studien zur Vitamin E-beschichteten Membran mit Erfassung des oxidativen Stresses: Ergebnisse. 64

Tabelle 40: Einschlusskriterien für Literaturstellen zur Bewertung der Wirtschaftlichkeit. 71

Tabelle 41: Ausschlusskriterien für Literaturstellen zur Bewertung der Wirtschaftlichkeit 71

Tabelle 42: Kostenkomponenten bei Prävention kardiovaskulärer Erkrankungen mit antioxidativen Vitaminen. ... 71

Tabelle 43: Dokumentationsstruktur für die standardisierte Berichterstattung von gesundheitsökonomischen Primärstudien und Synthesen von Primärstudien (erarbeitet von der German Scientific Working Group Technology Assessment for Health Care). 73
5.4 Literaturrecherche

Recherche in HTA- und Cochrane-Datenbanken DAHTA; INAHTA; NHSEED; HT83; CDAR94; CDSR93 und medizinischen Datenbanken ME90; EM90; CB85; BA90; MK77; SE00; CCTR93; GA03; SM78; CV72; II78; BD82; EB94; ED93; AZ72; AR96; ME0A; EA08; IS90; LT01; CC00; IN73; KR03; KL97; SP97; SPPP; TV01 durchgeführt von DIMDI am 04. April 2005

C= 73412 DAHTA; INAHTA; NHSEED; HT83; CDAR94; CDSR93

S= 2 Treffer Schlagworte

39 VITAMIN A
39 VITAMIN C
55 VITAMIN E
17 ANTIOXDA#T? VITAMIN?
6 check duplicates: unique in s=6

S= 48 Treffer Schlagworte

1424942 CT D CARDIOVASCULAR DISEASE?
612874 CT D HERZ-KREISLAUF-KRANKHEITEN
76626 CT D CORONARY ARTERY DISEASE?
773403 CT D HEART DISEASE?
280619 CT D HERZKRANKHEIT?
43990 CT D KORONARARTERIEN?
676795 CARDIOVASCULAR DISEASE?
29788 HERZ KREISLAUF KRANKHEIT? OR HERZKREISLAUFKRANKHEIT?
154494 CORONARY ARTERY DISEASE?
456873 HEART DISEASE?
24229 HERZKRANKHEIT?
869 KORONARARTERIE? ? KRANKHEIT?
184387 CT=OXIDATIVE STRESS OR CTG= OXIDATIVER STRESS OR OXIDATIVE#
61 STRESS
78349 CT D STROKE
24897 CT D SCHLAGANFALL
234492 CT D CEREBROVASCULAR DISORDERS
357659 CT D PERIPHERAL VASCULAR DISEASE
Antioxidative Vitamine zur Prävention kardiovaskulärer Erkrankungen nach Nierentransplantation und bei chronischer Niereninsuffizienz

Fortsetzung: Literaturrecherche

<table>
<thead>
<tr>
<th>Nummer</th>
<th>MedDRA Code</th>
<th>Begriff</th>
</tr>
</thead>
<tbody>
<tr>
<td>65</td>
<td>288454</td>
<td>STROKE?</td>
</tr>
<tr>
<td>66</td>
<td>40761</td>
<td>CEREBROVASCULAR DISORDER?</td>
</tr>
<tr>
<td>67</td>
<td>28086</td>
<td>PERIPHERAL VASCULAR DISEASE?</td>
</tr>
<tr>
<td>68</td>
<td>5</td>
<td>ZEREBROVASKULÄRE STROKE?</td>
</tr>
<tr>
<td>69</td>
<td>4812</td>
<td>SCHLAGANFALL? OR HIRNSCHLÜSSEL? OR HIRNINFARKT?</td>
</tr>
<tr>
<td>70</td>
<td>2325844</td>
<td>48 TO 69</td>
</tr>
<tr>
<td>71</td>
<td>67376</td>
<td>CT D RENAL TRANSPLANTATION</td>
</tr>
<tr>
<td>72</td>
<td>38322</td>
<td>CT D CHRONIC KIDNEY FAILURE</td>
</tr>
<tr>
<td>73</td>
<td>42446</td>
<td>CT D CHRONIC RENAL FAILURE</td>
</tr>
<tr>
<td>74</td>
<td>38188</td>
<td>CT D CHRONIC KIDNEY INSUFFICIENCY</td>
</tr>
<tr>
<td>75</td>
<td>38785</td>
<td>CT D CHRONIC RENAL INSUFFICIENCY</td>
</tr>
<tr>
<td>76</td>
<td>28126</td>
<td>CT D END-STAGE KIDNEY DISEASE</td>
</tr>
<tr>
<td>77</td>
<td>32492</td>
<td>CT D END-STAGE RENAL DISEASE</td>
</tr>
<tr>
<td>78</td>
<td>20230</td>
<td>CT D DIABETIC NEPHROPATHY</td>
</tr>
<tr>
<td>79</td>
<td>29727</td>
<td>CTG D NIERENTRANSPLANTATION</td>
</tr>
<tr>
<td>80</td>
<td>40501</td>
<td>CTG D NIERENINSUFFIZIENZ</td>
</tr>
<tr>
<td>81</td>
<td>142233</td>
<td>(KIDNEY OR RENAL) TRANSPLANT?</td>
</tr>
<tr>
<td>82</td>
<td>55248</td>
<td>CHRONIC (KIDNEY OR RENAL) FAILURE?</td>
</tr>
<tr>
<td>83</td>
<td>568</td>
<td>END STAGE KIDNEY DISEASE? OR END STAGE KIDNEY DISEASE?</td>
</tr>
<tr>
<td>84</td>
<td>39000</td>
<td>END STAGE RENAL DISEASE? OR END STAGE RENAL DISEASE?</td>
</tr>
<tr>
<td>85</td>
<td>17786</td>
<td>ESRD</td>
</tr>
<tr>
<td>86</td>
<td>31425</td>
<td>NIERENTRANSPLANTATION?</td>
</tr>
<tr>
<td>87</td>
<td>2429</td>
<td>NIERENINSUFFIZIENZ?</td>
</tr>
<tr>
<td>88</td>
<td>28</td>
<td>CHRONISCHE NIERENERKRANKUNG?</td>
</tr>
<tr>
<td>89</td>
<td>46575</td>
<td>PERITONEAL DIALYSIS</td>
</tr>
<tr>
<td>90</td>
<td>29953</td>
<td>(RENAL OR KIDNEY) DIALYSIS?</td>
</tr>
<tr>
<td>91</td>
<td>37932</td>
<td>DIABETIC NEPHROPATHY</td>
</tr>
<tr>
<td>92</td>
<td>38332</td>
<td>DIALYSE</td>
</tr>
<tr>
<td>93</td>
<td>8221</td>
<td>DIABETISCHE NEPHROPATHIE?</td>
</tr>
<tr>
<td>94</td>
<td>336010</td>
<td>71 TO 93</td>
</tr>
</tbody>
</table>
Fortsetzung: Literaturrecherche

95 49761 70 AND 94
96 770 95 AND CT D PREVENTION
97 578 95 AND CT D PROPHYLAXIS
98 21 95 AND CT D HEALTH PROMOTION
99 48 95 AND CTG D PRAEVENTION?
100 6973 95 AND ?PREVENTION#
101 578 95 AND ?PROPHYLAX?
102 20 95 AND HEALTH PROMOTION#
103 68 95 AND (?PRÄVENTION## OR ?PRAEVENTION##)
104 9 95 AND (?FRÜHERKENNUNG## OR ?FRÜHERKENNUNG##)
105 7584 96 TO 104
106 471 105 AND CT D VITAMIN?
107 108 105 AND CTG D VITAMIN?
108 345 105 AND VITAMIN?
109 64 105 AND CT D ASCORBIC ACID
110 8 105 AND CTG D ASCORBINSAEURE
111 65 105 AND ASCORBIC ACID?
112 8 105 AND ASCORBINSA#URE?
113 0 105 AND CT D BIOTIN
114 0 105 AND CTG D BIOTIN
115 2 105 AND BIOTIN?
116 16 105 AND CT D CALCIFEROL?
117 6 105 AND CTG D CALCIFEROL?
118 0 105 AND CALCIFEROL?
119 14 105 AND CT D CAROTIN?
120 8 105 AND CTG D KAROTIN?
121 4 105 AND (CAROTIN? OR BETA CAROTIN?)
122 0 105 AND (KAROTIN? OR BETA KAROTIN?)
123 12 105 AND CT D COBALAMIN
124 8 105 AND CTG D COBALAMIN
Antioxidative Vitamine zur Prävention kardiovaskulärer Erkrankungen nach Nierentransplantation und bei chronischer Niereninsuffizienz

Fortsetzung: Literaturrecherche

<table>
<thead>
<tr>
<th>Fortsetzung: Literaturrecherche</th>
</tr>
</thead>
<tbody>
<tr>
<td>125</td>
</tr>
<tr>
<td>126</td>
</tr>
<tr>
<td>127</td>
</tr>
<tr>
<td>128</td>
</tr>
<tr>
<td>129</td>
</tr>
<tr>
<td>130</td>
</tr>
<tr>
<td>131</td>
</tr>
<tr>
<td>132</td>
</tr>
<tr>
<td>133</td>
</tr>
<tr>
<td>134</td>
</tr>
<tr>
<td>135</td>
</tr>
<tr>
<td>136</td>
</tr>
<tr>
<td>137</td>
</tr>
<tr>
<td>138</td>
</tr>
<tr>
<td>139</td>
</tr>
<tr>
<td>140</td>
</tr>
<tr>
<td>141</td>
</tr>
<tr>
<td>142</td>
</tr>
<tr>
<td>143</td>
</tr>
<tr>
<td>144</td>
</tr>
<tr>
<td>145</td>
</tr>
<tr>
<td>146</td>
</tr>
<tr>
<td>147</td>
</tr>
<tr>
<td>148</td>
</tr>
<tr>
<td>149</td>
</tr>
<tr>
<td>150</td>
</tr>
<tr>
<td>151</td>
</tr>
<tr>
<td>152</td>
</tr>
<tr>
<td>153</td>
</tr>
<tr>
<td>154</td>
</tr>
</tbody>
</table>
Fortsetzung: Literaturrecherche

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>155</td>
<td>106 105 AND CT D TOCOPHEROL?</td>
</tr>
<tr>
<td>156</td>
<td>4 105 AND CTG D TOKOPHEROL?</td>
</tr>
<tr>
<td>157</td>
<td>134 105 AND TO%OPHEROL?</td>
</tr>
<tr>
<td>158</td>
<td>623 106 TO 157</td>
</tr>
<tr>
<td>159</td>
<td>409023 CT D VITAMIN?</td>
</tr>
<tr>
<td>160</td>
<td>125271 CTG D VITAMIN?</td>
</tr>
<tr>
<td>161</td>
<td>452424 VITAMIN?</td>
</tr>
<tr>
<td>162</td>
<td>62592 CT D ASCORBIC ACID</td>
</tr>
<tr>
<td>163</td>
<td>10614 CTG D ASCORBINSAEURE</td>
</tr>
<tr>
<td>164</td>
<td>103521 ASCORBIC ACID?</td>
</tr>
<tr>
<td>165</td>
<td>10935 ASCORBINSA#URE?</td>
</tr>
<tr>
<td>166</td>
<td>14758 CT D BIOTIN</td>
</tr>
<tr>
<td>167</td>
<td>5201 CTG D BIOTIN</td>
</tr>
<tr>
<td>168</td>
<td>92862 BIOTIN?</td>
</tr>
<tr>
<td>169</td>
<td>5192 CT D CALCIFEROL?</td>
</tr>
<tr>
<td>170</td>
<td>13104 CTG D CALCIFEROL?</td>
</tr>
<tr>
<td>171</td>
<td>664 CALCIFEROL?</td>
</tr>
<tr>
<td>172</td>
<td>37548 CT D CAROTIN?</td>
</tr>
<tr>
<td>173</td>
<td>25017 CTG D KAROTIN?</td>
</tr>
<tr>
<td>174</td>
<td>7096 (CAROTIN? OR BETA CAROTIN?)</td>
</tr>
<tr>
<td>175</td>
<td>456 (KAROTIN? OR BETA KAROTIN?)</td>
</tr>
<tr>
<td>176</td>
<td>5765 CT D COBALAMIN</td>
</tr>
<tr>
<td>177</td>
<td>3870 CTG D COBALAMIN</td>
</tr>
<tr>
<td>178</td>
<td>9977 COBALAMIN?</td>
</tr>
<tr>
<td>179</td>
<td>32644 CT D FOLIC ACID</td>
</tr>
<tr>
<td>181</td>
<td>9333 CTG D FOLSAEURE</td>
</tr>
<tr>
<td>182</td>
<td>48507 FOLIC ACID</td>
</tr>
<tr>
<td>183</td>
<td>6138 FOLSA#URE</td>
</tr>
<tr>
<td>184</td>
<td>10196 (CT D NIACIN OR CT D NICOTINIC ACID)</td>
</tr>
<tr>
<td>185</td>
<td>1212 (CTG D NIACIN OR CTG D NICOTINSAEURE)</td>
</tr>
</tbody>
</table>
Antioxidative Vitamin zur Prävention kardiovaskulärer Erkrankungen nach Nierentransplantation und bei chronischer Niereninsuffizienz

Fortsetzung: Literaturrecherche

186 22635 (NIACIN OR NICOTINIC ACID)
187 2499 CT D PANTOTENIC ACID
188 283 CTG D PANTOTHENSÄURE
189 3343 PANTOTENIC ACID
190 310 PANTOTHENSÄURE
191 2213 CT D PHYLLOQUINONE
192 425 CTG D PHYLLOCHINON
193 8 PHYLLOQUINON
194 4 PHYLLOCHINON
195 13125 CT D PYRIDOXINE
196 1545 CTG D PYRIDOXIN
197 19248 PYRIDOXINE
198 1780 PYRIDOXIN
199 43435 CT D RETINOL
200 15365 CTG D RETINOL
201 55764 RETINOL
202 11504 CT D RIBOFLAVIN
203 2807 CTG D RIBOFLAVIN
204 22235 RIBOFLAVIN
205 12604 CT D THIAMIN#
206 1648 CTG D THIAMIN
207 28662 THIAMIN#
208 30299 CT D TOCOPHEROL?
209 1500 CTG D TOKOPHEROL?
210 76592 TOCOPHEROL?
211 1537 TOKOPHEROL?
212 872448 159 TO 211
213 90174 70 AND 212
220 5150 213 AND CT D PREVENTION
221 3481 213 AND CT D PROPHYLAXIS
Fortsetzung: Literaturrecherche

<table>
<thead>
<tr>
<th>Schritt</th>
<th>Schlüsselwörter</th>
</tr>
</thead>
<tbody>
<tr>
<td>222</td>
<td>192 213 AND CT D HEALTH PROMOTION</td>
</tr>
<tr>
<td>223</td>
<td>71 213 AND CTG D PRAEVENTION?</td>
</tr>
<tr>
<td>224</td>
<td>17786 213 AND ?PREVENTION#</td>
</tr>
<tr>
<td>225</td>
<td>578 95 AND ?PROPHYLAX?</td>
</tr>
<tr>
<td>226</td>
<td>273 213 AND HEALTH PROMOTION#</td>
</tr>
<tr>
<td>227</td>
<td>225 213 AND (?PRÄVENTION## OR ?PRAEVENTION##)</td>
</tr>
<tr>
<td>228</td>
<td>10 213 AND (?FRÜHERKENNUNG## OR ?FRÜHERKENNUNG##)</td>
</tr>
<tr>
<td>229</td>
<td>20362 220 TO 228</td>
</tr>
<tr>
<td>230</td>
<td>2809 95 AND 212</td>
</tr>
<tr>
<td>231</td>
<td>623 158</td>
</tr>
<tr>
<td>232</td>
<td>22548 229 TO 231</td>
</tr>
<tr>
<td>233</td>
<td>18161 229 AND PY>=1995</td>
</tr>
<tr>
<td>234</td>
<td>2603 230 AND PY>=1995</td>
</tr>
<tr>
<td>235</td>
<td>590 231 AND PY>=1995</td>
</tr>
<tr>
<td>236</td>
<td>20174 233 TO 235</td>
</tr>
<tr>
<td>237</td>
<td>18161 233</td>
</tr>
<tr>
<td>238</td>
<td>13042 check duplicates: unique in s=237</td>
</tr>
<tr>
<td>239</td>
<td>2603 234</td>
</tr>
<tr>
<td>240</td>
<td>1606 check duplicates: unique in s=239</td>
</tr>
<tr>
<td>241</td>
<td>590 235</td>
</tr>
<tr>
<td>242</td>
<td>484 check duplicates: unique in s=241</td>
</tr>
<tr>
<td>243</td>
<td>13042 238</td>
</tr>
<tr>
<td>244</td>
<td>1606 240</td>
</tr>
<tr>
<td>245</td>
<td>0 244 AND CT D TECHNOLOGY ASSESSMENT, BIOMEDICAL</td>
</tr>
<tr>
<td>246</td>
<td>0 244 AND CT D BIOMEDICAL TECHNOLOGY ASSESSMENT</td>
</tr>
<tr>
<td>247</td>
<td>0 244 AND HEALTH CARE TECHNOLOGY ASSESS?</td>
</tr>
<tr>
<td>248</td>
<td>0 244 AND HEALTH TECHNOLOGY ASSESS?</td>
</tr>
<tr>
<td>249</td>
<td>0 244 AND HEALTH CARE TECHNOLOGY EVALUAT?</td>
</tr>
<tr>
<td>250</td>
<td>0 244 AND HEALTH TECHNOLOGY EVALUAT?</td>
</tr>
<tr>
<td>251</td>
<td>0 244 AND BIOMEDICAL TECHNOLOGY ASSESS?</td>
</tr>
</tbody>
</table>
Antioxidative Vitamine zur Prävention kardiovaskulärer Erkrankungen nach Nierentransplantation und bei chronischer Niereninsuffizienz

Fortsetzung: Literaturrecherche

252 0 244 AND HTA
253 0 244 AND MEDICAL TECHNOLOGY ASSESS?
254 0 245 TO 253
255 1606 240
256 2 255 AND CT=REVIEW LITERATURE
257 5 255 AND CT=SYSTEMATIC REVIEW
258 0 255 AND CT=UEBERSICHTSARBEIT
259 0 255 AND DT=REVIEW LITERATURE
260 0 255 AND DT=REVIEW, ACADEMIC
261 23 255 AND REVIEW/TI
262 1 255 AND REVIEW LITERATURE
263 0 255 AND REVIEW SYSTEMATIC
264 0 255 AND REVIEW ACADEMIC
265 8 255 AND LITERATURE REVIEW
266 6 255 AND SYSTEMATIC REVIEW
267 0 255 AND ACADEMIC REVIEW
268 0 255 AND UEBERSICHTSARBEIT
269 37 256 TO 268
270 24 255 AND CT=META ANALYSIS
271 24 255 AND CT=META-ANALYSIS
272 1 255 AND DT=META-ANALYSIS
273 32 255 AND (METAANALY? OR META ANALY? OR META#ANALY?)
274 33 270 TO 273
275 64 269 OR 274
276 1606 240
277 44 276 AND DT=RANDOMIZED CONTROLLED TRIAL
278 26 276 AND CT=RANDOMIZED CONTROLLED TRIAL
279 0 276 AND CTG=RANDOMISIERUNG
280 1 276 AND CT D RANDOM ALLOCATION
281 0 276 AND CT=ALLOCATION, RANDOM
Fortsetzung: Literaturrecherche

282 1 276 AND CT=SINGLE BLIND PROCEDURE
283 2 276 AND CT=SINGLE-BLIND METHOD
284 12 276 AND CT=D DOUBLE BLIND PROCEDURE
285 24 276 AND CT=DOUBLE-BLIND METHOD
286 39 276 AND CT=D PLACEBO?
287 18 276 AND CT=D CROSS-OVER STUDIES
288 4 276 AND CT=CROSSOVER PROCEDURE
289 3 276 AND RCT
295 3 276 AND (SINGLE#BLIND? OR SINGLE BLIND?)
296 32 276 AND (DOUBLE#BLIND? OR DOUBLE BLIND?)
297 0 276 AND (TRIPLE#BLIND? OR TRIPLE BLIND?)
298 0 276 AND (TRIPLE#BLIND? OR TRIPLE BLIND?)
299 14 276 AND DOPPEL?= ? BLIND?
300 0 276 AND ZWEIFACH?= ? BLIND?
301 0 276 AND DREIFACH?= ? BLIND?
302 42 276 AND ?BLIND### AND (STUD? OR TRIAL? OR VERSUCH?)
303 1 276 AND ZUFALL?
304 22 276 AND (CROSS#OVER? OR CROSS OVER?)
305 1 276 AND (UEBERKREUZ? OR ÜBERKREUZ?)
306 95 276 AND PLACEBO?
307 0 276 AND MASK?
308 194 277 TO 307
309 93 276 AND (DT=CCT OR DT=CLINICAL TRIAL)
310 187 276 AND CT=D CONTROLLED CLINICAL TRIAL
Antioxidative Vitamine zur Prävention kardiovaskulärer Erkrankungen nach Nierentransplantation und bei chronischer Niereninsuffizienz

Fortsetzung: Literaturrecherche

311 5 276 AND CTG D KONTROLLIERTE KLINISCHE STUDIEN
312 1 276 AND CCT
317 489 309 TO 316
318 47 276 AND CT D PROSPECTIVE STUDIEN
319 32 276 AND CTG=PROSPEKTIVE STUDIEN
320 80 276 AND PROSPEKTIVE (STUD? OR TRIAL?)
321 80 318 TO 320
322 532 308 OR 317
323 242 308 OR 321
324 523 317 OR 321
325 563 308 OR 317 OR 321
326 3 276 AND EINFACH? ? ?BLIND?
327 563 325 OR 326
328 1606 240
329 1 328 AND CT D (TRIAL OR TRIALS)
330 0 328 AND CT=(STUDY OR STUDIES)
331 0 328 AND DT=VALIDATION STUDIES
332 0 328 AND DT=REPORT
333 92 328 AND DT=CLINICAL TRIAL
334 4 328 AND DT=EVALUATION STUDIES
335 0 328 AND DT=(RESEARCH ARTICLE OR RESEARCH-ARTICLE)
336 17 328 AND DT=MULTICENTER STUDY
337 0 328 AND DT=TECHNICAL REPORT
338 944 328 AND (STUDY OR STUDIE?)
339 380 328 AND (TRIAL? OR VERSUCH?)
Antioxidative Vitamine zur Prävention kardiovaskulärer Erkrankungen nach Nierentransplantation und bei chronischer Niereninsuffizienz

Fortsetzung: Literaturrecherche

340 264 328 AND REPORT?
341 0 328 AND RESEARCH ARTICLE?
342 0 328 AND TECHNICAL REPORT?
343 1198 329 TO 342
344 1213 254 OR 275 OR 327 OR 343
345 7584 105
346 76 345 AND CT D ECONOMICS
347 71 345 AND CTG D ÖKONOMIE
348 29 345 AND CT D SOCIOECONOMICS
349 9 345 AND CT D MODELS, ECONOMIC
350 283 345 AND CT D ECONOMIC ASPECT
351 245 345 AND CT D ECONOMICS, MEDICAL
352 245 345 AND CT D HEALTH ECONOMICS
353 302 345 AND CT D COST?
354 56 345 AND CTG D KOSTEN?
355 120 345 AND CT D EFFICIENCY?
356 86 345 AND CT D COST ANALYSIS
357 397 345 AND (ECONOMI? OR OEKONOMI? OR ÖKONOMI?)
358 1 345 AND (GESUNDHEITSOEKONOMIE OR GESUNDHEITSÖKONOMIE)
359 47 345 AND EFFICIENC?
360 19 345 AND ECONOMIC EVALUATION?
361 13 345 AND HEALTH CARE FINANCING?
Fortsetzung: Literaturrecherche

372 0 345 AND (KOSTEN? ? NUTZWERT? AND (STUDIE? OR ANALYSE?))
373 5 345 AND (KOSTEN? ? WIRKSAMKEIT? AND (STUDIE? OR ANALYSE?))
374 1 345 AND (KOSTEN? ? EFFEKTVIT? AND (STUDIE? OR ANALYSE?))
375 4 345 AND (KOSTEN? ? EFFIZIENZ? AND (STUDIE? OR ANALYSE?))
376 19 345 AND (KOSTEN? ? ANALYSE?) AND STUDIE?
377 691 346 TO 376
378 3 345 AND CT=PHARMACOECONOMICS
379 122 345 AND (PHARMACOECONOMIC? OR PHARMAKOEKONOMI?)
380 691 377 TO 379
381 624 check duplicates: unique in s=380
382 2325844 70
383 53304 382 AND CT D PREVENTION
384 41192 382 AND CT D PROPHYLAXIS
385 3983 382 AND CT D HEALTH PROMOTION
386 1942 382 AND CTG D PRAEVENTION?
387 218689 382 AND ?PREVENTION?
388 23462 382 AND ?PROPHYLAX?
389 5883 382 AND HEALTH PROMOTION#
390 3874 382 AND (?PRÄVENTION## OR ?PRAEVENTION##)
391 129 382 AND (?FRÜHERKENNUNG## OR ?FRÜHEHERKENNUNG##)
392 255077 383 TO 391
393 2649 392 AND CT D ECONOMICS
394 2476 392 AND CTG D ÖKONOMIE
Fortsetzung: Literaturrecherche

<table>
<thead>
<tr>
<th>Nummer</th>
<th>Relevante Begriffe</th>
</tr>
</thead>
<tbody>
<tr>
<td>395</td>
<td>592 392 AND CT D SOCIOECONOMICS</td>
</tr>
<tr>
<td>396</td>
<td>222 392 AND CT D MODELS, ECONOMIC</td>
</tr>
<tr>
<td>397</td>
<td>7165 392 AND CT D ECONOMIC ASPECT</td>
</tr>
<tr>
<td>398</td>
<td>6013 392 AND CT D ECONOMICS, MEDICAL</td>
</tr>
<tr>
<td>399</td>
<td>6004 392 AND CT D HEALTH ECONOMICS</td>
</tr>
<tr>
<td>400</td>
<td>8060 392 AND CT D COST?</td>
</tr>
<tr>
<td>401</td>
<td>1947 392 AND CTG D KOSTEN?</td>
</tr>
<tr>
<td>402</td>
<td>3940 392 AND CT D EFFICIENCY?</td>
</tr>
<tr>
<td>403</td>
<td>2727 392 AND CT D COST ANALYSIS</td>
</tr>
<tr>
<td>404</td>
<td>11326 392 AND (ECONOMI? OR OEKONOMI? OR ÖKONOMI?)</td>
</tr>
<tr>
<td>405</td>
<td>17 392 AND (GESUNDHEITSOEKONOMIE OR GESUNDHEITSOEKONOMIE)</td>
</tr>
<tr>
<td>406</td>
<td>1425 392 AND EFFICIENC?</td>
</tr>
<tr>
<td>407</td>
<td>362 392 AND ECONOMIC EVALUATION?</td>
</tr>
<tr>
<td>408</td>
<td>101 392 AND HEALTH CARE FINANCING?</td>
</tr>
<tr>
<td>418</td>
<td>1337 392 AND (KOSTEN? ? NUTZEN? AND (STUDIE? OR ANALYSE?))</td>
</tr>
<tr>
<td>419</td>
<td>4 392 AND (KOSTEN? ? NUTZWERT? AND (STUDIE? OR ANALYSE?))</td>
</tr>
</tbody>
</table>
Fortsetzung: Literaturrecherche

420 34 392 AND (KOSTEN? ? WIRKSAMKEIT? AND (STUDIE? OR ANALYSE?))

422 21 392 AND (KOSTEN? ? EFFIZIENZ? AND (STUDIE? OR ANALYSE?))

423 677 392 AND (KOSTEN? ? ANALYSE?) AND STUDIE?

424 20590 393 TO 423

425 84 392 AND CT=PHARMACOECONOMICS

426 2796 392 AND (PHARMACOECONOMIC? OR PHARMAKOEKONOMI?)

427 20665 424 TO 426

428 113 46 HTA-Dokumente

429 1213 344 medizinische Dokumente

430 624 381 ökonomische Dokumente

428 1912 Dokumente bearbeitet
to 430

431 Anzahl Hits 1912 ch dup

2 Duplikate entfernt

432 1910 check duplicates: unique in s=431
5.5 Checklisten für die Bewertung der medizinischenWirksamkeit

5.5.1. Studien zur oralen Supplementation und Infusion von antioxidativen Vitaminen

<table>
<thead>
<tr>
<th>Bericht Nr.:</th>
<th>1304 / 02.0.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Autoren:</td>
<td>Boaz, M; Smetana, S; Weinstein, T; Matas, Z; Gafter, U; Iaina, A; Knecht, A; Weissgarten, Y; Brunner, D; Fainaru, M; Green, MS</td>
</tr>
</tbody>
</table>

Checkliste 2a: Primärstudien (RCT / Fallkontrollstudien / Kohortenstudien / Längsschnittstudien / Fallserien)

<table>
<thead>
<tr>
<th>Klas</th>
<th>A Auswahl der Studienteilnehmer</th>
</tr>
</thead>
<tbody>
<tr>
<td>QA</td>
<td>Sind die Ein- und Ausschlusskriterien für Studienteilnehmer ausreichend / eindeutig definiert?</td>
</tr>
<tr>
<td>QA</td>
<td>Wurden die Ein-/ Ausschlusskriterien vor Beginn der Intervention festgelegt?</td>
</tr>
<tr>
<td>QA</td>
<td>Wurde der Erkrankungsstatus valide und reliabel erfasst?</td>
</tr>
<tr>
<td>QBI</td>
<td>Sind die diagnostischen Kriterien der Erkrankung beschrieben?</td>
</tr>
<tr>
<td>QB</td>
<td>Ist die Studienpopulation / exponierte Population repräsentativ für die Mehrheit der exponierten Population bzw. die „Standardnutzer“ der Intervention?</td>
</tr>
<tr>
<td>QA</td>
<td>Bei Kohortenstudien: Wurden die Studiengruppen gleichzeitig betrachtet?</td>
</tr>
</tbody>
</table>

B Zuordnung und Studienteilnahme

QA	Entstammen die Exponierten / Fälle und Nicht-Exponierten / Kontrollen einer ähnlichen Grundgesamtheit?
QA	Sind Interventions- / Exponierten- und Kontroll- / Nicht-Exponierengruppen zu Studienbeginn vergleichbar?
QB	Erfolgte die Auswahl randomisiert mit einem standardisierten Verfahren?
QC	Erfolgte die Randomisierung blind?
QA	Sind bekannte / mögliche Confounder zu Studienbeginn berücksichtigt worden?

C Intervention / Exposition

QA	Wurden Intervention bzw. Exposition valide, reliabel und gleichartig erfasst?
QB	Wurden Interventions- / Kontrollgruppen mit Ausnahme der Intervention gleichartig therapiert?
QB	Falls abweichende Therapien vorlagen, wurden diese valide und reliabel erfasst?
QA	Bei RCT: Wurden für die Kontrollgruppen Placebos verwendet?
QA	Bei RCT: Wurde dokumentiert wie die Placebos verabreicht wurden?

D Studienadministration

QB	Gibt es Anhaltspunkte für ein "Overmatching"?
QB	Waren bei Multicenterstudien die diagnostischen und therapeutischen Methoden sowie die Outcomemessung in den beteiligten Zentren identisch?
QA	Wurde sichergestellt, dass Studienteilnehmer nicht zwischen Interventions- und Kontrollgruppe wechselten?

E Outcomemessung

I	Wurden patientennahe Outcomeparameter verwendet?
QA	Wurden die Outcomes valide und reliabel erfasst?
QC	Erfolgte die Outcomemessung verblindet?
QC	Wurde die Verteilung prognostischer Faktoren ausreichend erfasst?

F Dropouts

QA	War die Responderate bei Interventions- / Kontrollgruppen ausreichend hoch bzw. bei Kohortenstudien: konnten ein ausreichend großer Teil der Kohorte über die gesamte Studiendauer verfolgt werden?
QA	Wurden die Gründe für Ausscheiden von Studienteilnehmern aufgelistet?
QA	Wurden die Outcomes der Dropouts beschrieben und in der Auswertung berücksichtigt?
QB	Falls Differenzen gefunden wurden - sind diese signifikant?
QB	Falls Differenzen gefunden wurden - sind diese relevant?

G Statistische Analyse

QA	Sind die beschriebenen analytischen Verfahren korrekt und die Informationen für eine einwandfreie Analyse ausreichend?
QB	Wurden für Mittelwerte und Signifikanztests Konfidenzintervalle angegeben?
I	Sind die Ergebnisse in graphischer Form präsentiert und wurden die den Graphiken zugrundeliegenden Werte angegeben?

Beurteilung: Die vorliegende Publikation wird: berücksichtigt Ausgeschlossen
Antioxidative Vitamine zur Prävention kardiovaskulärer Erkrankungen nach Nierentransplantation und bei chronischer Niereninsuffizienz

Checkliste 2a: Primärstudien (RCT / Fallkontrollstudien / Kohortenstudien / Längsschnittstudien / Fallserie)

<table>
<thead>
<tr>
<th>Bericht Nr.:</th>
<th>1304 / 02.0.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Titel:</td>
<td>Vitamin C and E supplements improve the impaired antioxidant status and decrease plasma lipid peroxides in hemodialysis patients.</td>
</tr>
<tr>
<td>Autoren:</td>
<td>Chao, JJC; Yuan, MD; Chen, PY; Chien, SW</td>
</tr>
<tr>
<td>Quelle:</td>
<td>Journal of nutritional biochemistry 13 (2002). Nr. N11, S. 653-663</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dokumenttyp</th>
<th>RCT:</th>
<th>Kohortenstudie:</th>
<th>Fallkontrollstudie:</th>
<th>Längsschnittstudien:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fallserie:</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Klasse</th>
<th>A Auswahl der Studienteilnehmer</th>
<th>Ja</th>
<th>Nein</th>
<th>?</th>
</tr>
</thead>
<tbody>
<tr>
<td>QA 1</td>
<td>Sind die Ein- und Ausschlusskriterien für Studienteilnehmer ausreichend / eindeutig definiert?</td>
<td>☑</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>QA 2</td>
<td>Wurden die Ein- / Ausschlusskriterien vor Beginn der Intervention festgelegt?</td>
<td>☑</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>QA 3</td>
<td>Wurde der Erkrankungsstatus valide und reliabel erfasst?</td>
<td>☑</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>QA 4</td>
<td>Sind die diagnostischen Kriterien der Erkrankung beschrieben?</td>
<td>☑</td>
<td>☐</td>
<td>☒</td>
</tr>
<tr>
<td>QA 5</td>
<td>Ist die Studienpopulation / exponierte Population repräsentativ für die Mehrheit der exponierten Population bzw. die „Standardnutzer“ der Intervention?</td>
<td>☑</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>QA 6</td>
<td>Bei Kohortenstudien: Wurden die Studiengruppen gleichzeitig betrachtet?</td>
<td>☑</td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Klasse</th>
<th>B Zuordnung und Studienteilnahme</th>
<th>Ja</th>
<th>Nein</th>
<th>?</th>
</tr>
</thead>
<tbody>
<tr>
<td>QA 1</td>
<td>Entstammen die Exponierten / Fälle und Nicht-Exponierten / Kontrollen einer ähnlichen Grundgesamtheit?</td>
<td>☑</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>QA 2</td>
<td>Sind Interventions- / Exponierten- und Kontroll- / Nicht-Exponiertengruppen zu Studienbeginn vergleichbar?</td>
<td>☑</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>QB 3</td>
<td>Erfolgte die Auswahl randomisiert mit einem standardisierten Verfahren?</td>
<td>☑</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>QC 4</td>
<td>Erfolgte die Randomisierung blind?</td>
<td>☑</td>
<td>☐</td>
<td>☒</td>
</tr>
<tr>
<td>QA 5</td>
<td>Sind bekannte / mögliche Confounder zu Studienbeginn berücksichtigt worden?</td>
<td>☑</td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Klasse</th>
<th>C Intervention / Exposition</th>
<th>Ja</th>
<th>Nein</th>
<th>?</th>
</tr>
</thead>
<tbody>
<tr>
<td>QA 1</td>
<td>Wurden Intervention bzw. Exposition valide, reliabel und gleichartig erfasst?</td>
<td>☑</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>QB 2</td>
<td>Wurden Interventions- / Kontrollgruppen mit Ausnahme der Intervention gleichartig therapiert?</td>
<td>☑</td>
<td>☐</td>
<td>☒</td>
</tr>
<tr>
<td>QB 3</td>
<td>Falls abweichende Therapien vorlagen, wurden diese valide und reliabel erfasst?</td>
<td>☑</td>
<td>☐</td>
<td>☒</td>
</tr>
<tr>
<td>QA 4</td>
<td>Bei RCT: Wurden für die Kontrollgruppen Placebos verwendet?</td>
<td>☑</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>QA 5</td>
<td>Bei RCT: Wurde dokumentiert wie die Placebos verabreicht wurden?</td>
<td>☑</td>
<td>☐</td>
<td>☒</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Klasse</th>
<th>D Studienadministration</th>
<th>Ja</th>
<th>Nein</th>
<th>?</th>
</tr>
</thead>
<tbody>
<tr>
<td>QB 1</td>
<td>Gibt es Anhaltspunkte für ein „Overmatching“?</td>
<td>☑</td>
<td>☐</td>
<td>☒</td>
</tr>
<tr>
<td>QB 2</td>
<td>Waren bei Multicenterstudien die diagnostischen und therapeutischen Methoden sowie die Outcomemessung in den beteiligten Zentren identisch?</td>
<td>☑</td>
<td>☐</td>
<td>☒</td>
</tr>
<tr>
<td>QA 3</td>
<td>Wurde sichergestellt, dass Studienteilnehmer nicht zwischen Interventions- und Kontrollgruppe wechselten?</td>
<td>☑</td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Klasse</th>
<th>E Outcomemessung</th>
<th>Ja</th>
<th>Nein</th>
<th>?</th>
</tr>
</thead>
<tbody>
<tr>
<td>QA 1</td>
<td>Wurden patientennahe Outcomeparameter verwendet?</td>
<td>☑</td>
<td>☐</td>
<td>☒</td>
</tr>
<tr>
<td>QB 2</td>
<td>Wurden die Outcomes valide und reliabel erfasst?</td>
<td>☑</td>
<td>☐</td>
<td>☒</td>
</tr>
<tr>
<td>QC 3</td>
<td>Erfolgte die Outcomemessung verblindet?</td>
<td>☑</td>
<td>☐</td>
<td>☒</td>
</tr>
<tr>
<td>QC 4</td>
<td>Bei Fallserien: Wurde die Verteilung prognostischer Faktoren ausreichend erfasst?</td>
<td>☑</td>
<td>☐</td>
<td>☒</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Klasse</th>
<th>F Dropouts</th>
<th>Ja</th>
<th>Nein</th>
<th>?</th>
</tr>
</thead>
<tbody>
<tr>
<td>QA 1</td>
<td>War die Responserate bei Interventions- / Kontrollgruppen ausreichend hoch bzw. bei Kohortenstudien: konnte ein ausreichend großer Teil der Kohorte über die gesamte Studiendauer verfolgt werden?</td>
<td>☑</td>
<td>☐</td>
<td>☒</td>
</tr>
<tr>
<td>QA 2</td>
<td>Wurden die Gründe für Ausscheiden von Studienteilnehmern aufgelistet?</td>
<td>☑</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>QB 3</td>
<td>Wurden die Outcomes der Dropouts beschrieben und in der Auswertung berücksichtigt?</td>
<td>☑</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>QB 4</td>
<td>Falls Differenzen gefunden wurden - sind diese signifikant?</td>
<td>☑</td>
<td>☐</td>
<td>☒</td>
</tr>
<tr>
<td>QB 5</td>
<td>Falls Differenzen gefunden wurden - sind diese relevant?</td>
<td>☑</td>
<td>☐</td>
<td>☒</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Klasse</th>
<th>G Statistische Analyse</th>
<th>Ja</th>
<th>Nein</th>
<th>?</th>
</tr>
</thead>
<tbody>
<tr>
<td>QA 1</td>
<td>Sind die beschriebenen analytischen Verfahren korrekt und die Informationen für eine einwandfreie Analyse ausreichend?</td>
<td>☑</td>
<td>☐</td>
<td>☒</td>
</tr>
<tr>
<td>QB 2</td>
<td>Wurden für Mittelwerte und Signifikanztests Konfidenzintervalle angegeben?</td>
<td>☑</td>
<td>☐</td>
<td>☒</td>
</tr>
<tr>
<td>I 3</td>
<td>Sind die Ergebnisse in graphischer Form präsentiert und wurden die den Graphiken zugrundeliegenden Werte angegeben?</td>
<td>☑</td>
<td>☐</td>
<td>☒</td>
</tr>
</tbody>
</table>

Beurteilung: Die vorliegende Publikation wird: ☑ berücksichtigt ☒ ausgeschlossen ☐
Antioxidative Vitamine zur Prävention kardiovaskulärer Erkrankungen nach Nierentransplantation und bei chronischer Niereninsuffizienz

<table>
<thead>
<tr>
<th>Checkliste 2a: Primärstudien (RCT / Fallkontrollstudien / Kohortenstudien / Längsschnittstudien / Fallserien)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bericht Nr.: 1304 / 02.0.1</td>
</tr>
<tr>
<td>Titel: Effect of vitamins on the lipid profile of patients on regular hemodialysis.</td>
</tr>
<tr>
<td>Autoren: Khajehdehi, P</td>
</tr>
</tbody>
</table>

Dokumenttyp RCT: ☐ Kohortenstudie: ☐ Fallkontrollstudie: ☐ Längsschnittstudie: ☐

<table>
<thead>
<tr>
<th>Klass</th>
<th>A Auswahl der Studienteilnehmer</th>
<th>Ja</th>
<th>Nein</th>
<th>?</th>
</tr>
</thead>
<tbody>
<tr>
<td>QA 1.</td>
<td>Sind die Ein- und Ausschlusskriterien für Studienteilnehmer ausreichend / eindeutig definiert?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>QA 2.</td>
<td>Wurden die Ein-/ Ausschlusskriterien vor Beginn der Intervention festgelegt?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>QA 3.</td>
<td>Wurde der Erkrankungsstatus valide und reliabel erfasst?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>QBI 4.</td>
<td>Sind die diagnostischen Kriterien der Erkrankung beschrieben?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>QB 5.</td>
<td>Ist die Studienpopulation / exponierte Population repräsentativ für die Mehrheit der exponierten Population bzw. die „Standardutzer“ der Intervention?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>QA 6.</td>
<td>Bei Kohortenstudien: Wurden die Studiengruppen gleichzeitig betrachtet?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>

B Zuordnung und Studienteilnahme

<table>
<thead>
<tr>
<th>Klass</th>
<th>Ja</th>
<th>Nein</th>
<th>?</th>
</tr>
</thead>
<tbody>
<tr>
<td>QA 1.</td>
<td>Entstammen die Exponierten / Fälle und Nicht-Exponierten / Kontrollen einer ähnlichen Grundgesamtheit?</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>QA 2.</td>
<td>Sind Interventions- / Exponierten- und Kontroll- / Nicht-Exponiertengruppen zu Studienbeginn vergleichbar?</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>QB 3.</td>
<td>Erfolgte die Auswahl randomisiert mit einem standardisierten Verfahren?</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>QC 4.</td>
<td>Erfolgte die Randomisierung blind?</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>QA 5.</td>
<td>Sind bekannte / mögliche Confounder zu Studienbeginn berücksichtigt worden?</td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>

C Intervention / Exposition

<table>
<thead>
<tr>
<th>Klass</th>
<th>Ja</th>
<th>Nein</th>
<th>?</th>
</tr>
</thead>
<tbody>
<tr>
<td>QA 1.</td>
<td>Wurden Intervention bzw. Exposition valide, reliabel und gleichartig erfasst?</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>QB 2.</td>
<td>Wurden Interventions- / Kontrollgruppen mit Ausnahme der Intervention gleichartig therapiert?</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>QB 3.</td>
<td>Falls abweichende Therapien vorlagen, wurden diese valide und reliabel erfasst?</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>QA 4.</td>
<td>Bei RCT: Wurden für die Kontrollgruppen Placebos verwendet?</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>QA 5.</td>
<td>Bei RCT: Wurde dokumentiert wie die Placebos verabreicht wurden?</td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>

D Studienadministration

<table>
<thead>
<tr>
<th>Klass</th>
<th>Ja</th>
<th>Nein</th>
<th>?</th>
</tr>
</thead>
<tbody>
<tr>
<td>QB 1.</td>
<td>Gibt es Anhaltspunkte für ein "Overmatching?"</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>QB 2.</td>
<td>Waren bei Multicenterstudien die diagnostischen und therapeutischen Methoden sowie die Outcomemessung in den beteiligten Zentren identisch?</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>QA 3.</td>
<td>Wurde sichergestellt, dass Studienteilnehmer nicht zwischen Interventions- und Kontrollgruppe wechselten?</td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>

E Outcomemessung

<table>
<thead>
<tr>
<th>Klass</th>
<th>Ja</th>
<th>Nein</th>
<th>?</th>
</tr>
</thead>
<tbody>
<tr>
<td>I 1.</td>
<td>Wurden patientennahen Outcomeparameter verwendet?</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>QA 2.</td>
<td>Wurden die Outcomes valide und reliabel erfasst?</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>QB 3.</td>
<td>Erfolgte die Outcomemessung verblindet?</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>QC 4.</td>
<td>Bei Fallserien: Wurde die Verteilung prognostischer Faktoren ausreichend erfasst?</td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>

F Dropouts

<table>
<thead>
<tr>
<th>Klass</th>
<th>Ja</th>
<th>Nein</th>
<th>?</th>
</tr>
</thead>
<tbody>
<tr>
<td>QA 1.</td>
<td>War die Responserate bei Interventions- / Kontrollgruppen ausreichend hoch bzw. bei Kohortenstudien: konnte ein ausreichend großer Teil der Kohorte über die gesamte Studiendauer verfolgt werden?</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>QA 2.</td>
<td>Wurden die Gründe für Ausscheiden von Studienteilnehmern aufgelistet?</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>QB 3.</td>
<td>Wurden die Outcomes der Dropouts beschrieben und in der Auswertung berücksichtigt?</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>QB 4.</td>
<td>Falls Differenzen gefunden wurden - sind diese signifikant?</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>QB 5.</td>
<td>Falls Differenzen gefunden wurden - sind diese relevant?</td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>

G Statistische Analyse

<table>
<thead>
<tr>
<th>Klass</th>
<th>Ja</th>
<th>Nein</th>
<th>?</th>
</tr>
</thead>
<tbody>
<tr>
<td>QA 1.</td>
<td>Sind die beschriebenen analytischen Verfahren korrekt und die Informationen für eine einwandfreie Analyse ausreichend?</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>QB 2.</td>
<td>Wurden für Mittelwerte und Signifikanztests Konfidenzintervalle angegeben?</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>I 3.</td>
<td>Sind die Ergebnisse in graphischer Form präsentiert und wurden die den Graphiken zugrundeliegenden Werte angegeben?</td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>

Beurteilung: Die vorliegende Publikation wird: berücksichtigt ☑ ausgeschlossen ☐
Antioxidative Vitamine zur Prävention kardiovaskulärer Erkrankungen nach Nierentransplantation und bei chronischer Niereninsuffizienz

Checkliste 2a: Primärstudien (RCT / Fall-Kontrollstudien / Kohortenstudien / Längsschnittstudien / Fallserien)

Bericht Nr.: 1304 / 02.0.1

Autoren: Mann, JF; Lonn, EM; Yi, Q; Gerstein, HC; Hoogwerf, BJ; Pogue, J; Bosch, J; Dagenais, GR; Yusuf, S

Quelle: Kidney international 65 (2004). Nr. 4, S. 1375-1380

Dokumenttyp RCT: ☒ Kohortenstudie: ☐ Fall-Kontrollstudie: ☐ Längsschnittstudie: ☐

<table>
<thead>
<tr>
<th>Klas</th>
<th>A Auswahl der Studienteilnehmer</th>
<th>Ja</th>
<th>Nein</th>
<th>?</th>
</tr>
</thead>
<tbody>
<tr>
<td>QA 1</td>
<td>Sind die Ein- und Ausschlusskriterien für Studienteilnehmer ausreichend / eindeutig definiert?</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
<tr>
<td>QA 2</td>
<td>Wurden die Ein- / Ausschlusskriterien vor Beginn der Intervention festgelegt?</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
<tr>
<td>QA 3</td>
<td>Wurde der Erkrankungsstatus valide und reliabel erfasst?</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
<tr>
<td>QBI 4</td>
<td>Sind die diagnostischen Kriterien der Erkrankung beschrieben?</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
<tr>
<td>QB 5</td>
<td>Ist die Studienpopulation / exponierte Population repräsentativ für die Mehrheit der exponierten Population bzw. die "Standardnutzer" der Intervention?</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
<tr>
<td>QA 6</td>
<td>Wurde bei Kohortenstudien: Wurden die Studiengruppen gleichzeitig betrachtet?</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
</tbody>
</table>

B Zuordnung und Studienteilnahme

QA 1	Entstammen die Exponierten / Fälle und Nicht-Exponierten / Kontrollen einer ähnlichen Grundgesamtheit?	☐	☒	☐
QA 2	Sind Interventions- / Exponierten- und Kontroll- / Nicht-Exponierten gruppen zu Studienbeginn vergleichbar?	☐	☒	☐
QB 3	Erfolgte die Auswahl randomisiert mit einem standardisierten Verfahren?	☐	☒	☐
QC 4	Erfolgte die Randomisierung blind?	☐	☒	☐
QA 5	Sind bekannte / mögliche Confounder zu Studienbeginn berücksichtigt worden?	☐	☒	☐

C Intervention / Exposition

QA 1	Wurden Intervention bzw. Exposition valide, relaiabel und gleichartig erfasst?	☒	☐	☐
QB 2	Wurden Interventions- / Expositionen - und Kontroll- / Nicht-Exponierten gruppen mit Ausnahme der Intervention gleichartig therapiert?	☐	☒	☐
QB 3	Falls abweichende Therapien vorlagen, wurden diese valide und relaiabel erfasst?	☐	☒	☐
QA 4	Bei RCT: Wurden für die Kontrollgruppen Placebos verwendet?	☐	☒	☐
QA 5	Bei RCT: Wurde dokumentiert wie die Placebos verabreicht wurden?	☐	☒	☐

D Studienadministration

QB 1	Gibt es Anhaltspunkte für ein "Overmatching"?	☐	☒	☐
QB 2	Waren bei Multicenterstudien die diagnostischen und therapeutischen Methoden sowie die Outcomemessung in den beteiligten Zentren identisch?	☐	☒	☐
QA 3	Wurde sichergestellt, dass Studienteilnehmer nicht zwischen Interventions- und Kontrollgruppe wechselten?	☐	☒	☐

E Outcomemessung

I 1	Wurden patientennahe Outcomeparameter verwendet?	☐	☒	☐
QA 2	Wurden die Outcomes valide und reliabel erfasst?	☐	☒	☐
QB 3	Erfolgte die Outcomemessung verblindet?	☐	☒	☐
QC 4	Bei Fallserien: Wurde die Verteilung prognostischer Faktoren ausreichend erfasst?	☐	☒	☐

F Dropouts

QA 1	War die Responserate bei Interventions- / Kontrollgruppen ausreichend hoch bzw. bei Kohortenstudien: konnte ein ausreichend großer Teil der Kohorte über die gesamte Studiendauer verfolgt werden?	☐	☒	☐
QA 2	Wurden die Gründe für Ausscheiden von Studienteilnehmern aufgelistet?	☐	☒	☐
QB 3	Wurden die Outcomes der Dropouts beschrieben und in der Auswertung berücksichtigt?	☐	☒	☐
QB 4	Falls Differenzen gefunden wurden - sind diese signifikant?	☐	☒	☐
QB 5	Falls Differenzen gefunden wurden - sind diese relevant?	☐	☒	☐

G Statistische Analyse

QA 1	Sind die beschriebenen analytischen Verfahren korrekt und die Informationen für eine einwandfreie Analyse ausreichend?	☐	☒	☐
QB 2	Wurden für Mittelwerte und Signifikanztests Konfidenzintervalle angegeben?	☐	☒	☐
I 3	Sind die Ergebnisse in graphischer Form präsentiert und wurden die den Graphiken zugrundeliegenden Werte angegeben?	☐	☒	☐

Beurteilung: Die vorliegende Publikation wird: berücksichtigt ☒ ausgeschlossen ☐
Antioxidative Vitamine zur Prävention kardiovaskulärer Erkrankungen nach Nierentransplantation und bei chronischer Niereninsuffizienz

Checkliste 2a: Primärstudien (RCT / Fallkontrollstudien / Kohortenstudien / Längsschnittstudien / Fallserien)

Bericht Nr.: 1304 / 02.0.1

Titel: Effect of vitamin E on lipid metabolism and atherosclerosis in ESRD patients.

Autoren: Mune, M; Yukawa, S; Kishino, M; Otani, H; Kimura, K; Nishikawa, O; Takahashi, T; Kodama, N; Saika, Y; Yamada, Y

Dokumenttyp: RCT: ☒ Kohortenstudie: ☐ Fallkontrollstudie: ☐ Längsschnittstudie: ☐

<table>
<thead>
<tr>
<th>Klas</th>
<th>A Auswahl der Studienteilnehmer</th>
<th>Ja</th>
<th>Nein</th>
<th>?</th>
</tr>
</thead>
<tbody>
<tr>
<td>QA 1.</td>
<td>Sind die Ein- und Ausschlusskriterien für Studienteilnehmer ausreichend / eindeutig definiert?</td>
<td>☑</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>QA 2.</td>
<td>Wurden die Ein- / Ausschlusskriterien vor Beginn der Intervention festgelegt?</td>
<td>☑</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>QA 3.</td>
<td>Wurde der Erkrankungsstatus valide und reliabel erfasst?</td>
<td>☑</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>QBI 4.</td>
<td>Sind die diagnostischen Kriterien der Erkrankung beschrieben?</td>
<td>☑</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>QB 5.</td>
<td>Ist die Studienpopulation / exponierte Population repräsentativ für die Mehrheit der exponierten Population bzw. die „Standardnutzer“ der Intervention?</td>
<td>☑</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>QA 6.</td>
<td>Bei Kohortenstudien: Wurden die Studiengruppen gleichzeitig betrachtet?</td>
<td>☑</td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>

B Zuordnung und Studienteilnahme

QA 1.	Entstammen die Exponierten / Fälle und Nicht-Exponierten / Kontrollen einer ähnlichen Grundgesamtheit?	☑	☐	☐
QA 2.	Sind Interventions- / Exponierten- und Kontroll- / Nicht-Exponierengruppen zu Studienbeginn vergleichbar?	☑	☐	☐
QB 3.	Erfolgte die Auswahl randomisiert mit einem standardisierten Verfahren?	☑	☐	☐
QC 4.	Erfolgte die Randomisierung blind?	☑	☐	☐
QA 5.	Sind bekannte / mögliche Confounder zu Studienbeginn berücksichtigt worden?	☑	☐	☐

C Intervention / Exposition

QA 1.	Wurden Intervention bzw. Exposition valide, reliabel und gleichartig erfasst?	☑	☐	☐
QB 2.	Wurden Interventions- / Kontrollgruppen mit Ausnahme der Intervention gleichartig therapiert?	☑	☐	☐
QB 3.	Falls abweichende Therapien vorlagen, wurden diese valide und reliabel erfasst?	☑	☐	☐
QA 4.	Bei RCT: Wurden für die Kontrollgruppen Placebos verwendet?	☑	☐	☐
QA 5.	Bei RCT: Wurde dokumentiert wie die Placebos verabreicht wurden?	☑	☐	☐

D Studienadministration

QB 1.	Gibt es Anhaltspunkte für ein "Overmatching"?	☑	☐	☐
QA 2.	Waren bei Multicenterstudien die diagnostischen und therapeutischen Methoden sowie die Outcomemessung in den beteiligten Zentren identisch?	☑	☐	☐
QA 3.	Wurde sichergestellt, dass Studienteilnehmer nicht zwischen Interventions- und Kontrollgruppe wechselten?	☑	☐	☐

E Outcomemessung

I 1.	Wurden patientennahe Outcomeparameter verwendet?	☑	☐	☐
QA 2.	Wurden die Outcomes valide und reliabel erfasst?	☑	☐	☐
QB 3.	Erfolgte die Outcomemessung verblindet?	☑	☐	☐
QC 4.	Bei Fallserien: Wurde die Verteilung prognostischer Faktoren ausreichend erfasst?	☑	☐	☐

F Dropouts

QA 1.	War die Responderate bei Interventions- / Kontrollgruppen ausreichend hoch bzw. bei Kohortenstudien: konnte ein ausreichend großer Teil der Kohorte über die gesamte Studiendauer verfolgt werden?	☑	☐	☐
QA 2.	Wurden die Gründe für Ausscheiden von Studienteilnehmern aufgelistet?	☑	☐	☐
QB 3.	Wurden die Outcomes der Dropouts beschrieben und in der Auswertung berücksichtigt?	☑	☐	☐
QB 4.	Falls Differenzen gefunden wurden - sind diese signifikant?	☑	☐	☐
QB 5.	Falls Differenzen gefunden wurden - sind diese relevant?	☑	☐	☐

G Statistische Analyse

QA 1.	Sind die beschriebenen analytischen Verfahren korrekt und die Informationen für eine einwandfreie Analyse ausreichend?	☑	☐	☐
QB 2.	Wurden für Mittelwerte und Signifikanztests Konfidenzintervalle angegeben?	☑	☐	☐
I 3.	Sind die Ergebnisse in graphischer Form präsentiert und wurden die den Graphiken zugrundeliegenden Werte angegeben?	☑	☐	☐

Beurteilung: Die vorliegende Publikation wird: berücksichtigt ☐ ausgeschlossen ☐
Checkliste 2a: Primärstudien (RCT / Fallkontrollstudien / Kohortenstudien / Längsschnittstudien / Fallserien)

<table>
<thead>
<tr>
<th>Bericht Nr.:</th>
<th>1304 / 02.0.1</th>
</tr>
</thead>
</table>

Titel:
Vitamin E attenuates oxidative stress induced by intravenous iron in patients on hemodialysis.

Roob, JM; Khoschsorur, G; Tiran, A; Horina, JH; Holzer, H; Winklhofer-Roob, BM

<table>
<thead>
<tr>
<th>Dokumenttyp</th>
<th>RCT:</th>
<th>☒</th>
<th>Kohortenstudie:</th>
<th>☒</th>
<th>Fallkontrollstudie:</th>
<th>☒</th>
<th>Längsschnittstudie:</th>
<th>☒</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Klas</th>
<th>A Auswahl der Studienteilnehmer</th>
<th>Ja</th>
<th>Nein</th>
</tr>
</thead>
<tbody>
<tr>
<td>QA 1</td>
<td>Sind die Ein- und Ausschlusskriterien für Studienteilnehmer ausreichend / eindeutig definiert?</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>QA 2</td>
<td>Wurden die Ein-/ Ausschlusskriterien vor Beginn der Intervention festgelegt?</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>QA 3</td>
<td>Wurde der Erkrankungsstatus valide und reliabel erfasst?</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>QB 4</td>
<td>Sind die diagnostischen Kriterien der Erkrankung beschrieben?</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>QA 5</td>
<td>Ist die Studienpopulation / exponierte Population repräsentativ für die Mehrheit der exponierten Population bzw. die „Standardnutzer“ der Intervention?</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>QA 6</td>
<td>Bei Kohortenstudien: Wurden die Studiengruppen gleichzeitig betrachtet?</td>
<td>☑</td>
<td>☑</td>
</tr>
</tbody>
</table>

B Zuordnung und Studienteilnahme

QA 1	Entstammen die Exponierten / Fälle und Nicht-Exponierten / Kontrollen einer ähnlichen Grundgesamtheit?	☑	☑	☑
QA 2	Sind Interventions- / Exponierten- und Kontroll- / Nicht-Exponiertengruppen zu Studienbeginn vergleichbar?	☑	☑	☑
QB 3	Erfolgte die Auswahl randomisiert mit einem standardisierten Verfahren?	☑	☑	☑
QC 4	Erfolgte die Randomisierung blind?	☑	☑	☑
QA 5	Sind bekannte / mögliche Confounder zu Studienbeginn berücksichtigt worden?	☑	☑	☑

C Intervention / Exposition

QA 1	Wurden Intervention bzw. Exposition valide, reliabel und gleichartig erfasst?	☑	☑	☑
QB 2	Wurden Interventions- / Kontrollgruppen mit Ausnahme der Intervention gleichartig therapiert?	☑	☑	☑
QB 3	Falls abweichende Therapien vorlagen, wurden diese valide und reliabel erfasst?	☑	☑	☑
QA 4	Bei RCT: Wurden für die Kontrollgruppen Placebos verwendet?	☑	☑	☑
QA 5	Bei RCT: Wurde dokumentiert wie die Placebos verabreicht wurden?	☑	☑	☑

D Studienadministration

QB 1	Gibt es Anhaltspunkte für ein "Overmatching"?	☑	☑	☑
QB 2	Waren bei Multicenterstudien die diagnostischen und therapeutischen Methoden sowie die Outcomemessung in den beteiligten Zentren identisch?	☑	☑	☑
QA 3	Wurde sichergestellt, dass Studienteilnehmer nicht zwischen Interventions- und Kontrollgruppe wechselten?	☑	☑	☑

E Outcomemessung

I 1	Wurden patientennahe Outcomeparameter verwendet?	☑	☑	☑
QA 2	Wurden die Outcomes valide und reliabel erfasst?	☑	☑	☑
QB 3	Erfolgte die Outcomemessung verblindet?	☑	☑	☑
QC 4	Bei Fallserien: Wurde die Verteilung prognostischer Faktoren ausreichend erfasst?	☑	☑	☑

F Dropouts

QA 1	War die Responderate bei Interventions- / Kontrollgruppen ausreichend hoch bzw. bei Kohortenstudien: konnte ein ausreichend großer Teil der Kohorte über die gesamte Studiendauer verfolgt werden?	☑	☑	☑
QA 2	Wurden die Gründe für Ausscheiden von Studienteilnehmern aufgelistet?	☑	☑	☑
QB 3	Wurden die Outcomes der Dropouts beschrieben und in der Auswertung berücksichtigt?	☑	☑	☑
QB 4	Falls Differenzen gefunden wurden - sind diese signifikant?	☑	☑	☑
QB 5	Falls Differenzen gefunden wurden - sind diese relevant?	☑	☑	☑

G Statistische Analyse

QA 1	Sind die beschriebenen analytischen Verfahren korrekt und die Informationen für eine einwandfreie Analyse ausreichend?	☑	☑	☑
QB 2	Wurden für Mittelwerte und Signifikanztests Konfidenzintervalle angegeben?	☑	☑	☑
I 3	Sind die Ergebnisse in graphischer Form präsentiert und wurden die den Graphiken zugrundeliegenden Werte angegeben?	☑	☑	☑

Beurteilung: Die vorliegende Publikation wird: berücksichtigt ☒ ausgeschlossen ☑
<table>
<thead>
<tr>
<th>Klas</th>
<th>Fallserie</th>
<th>Andere</th>
<th>Ja</th>
<th>Nein</th>
<th>?</th>
</tr>
</thead>
<tbody>
<tr>
<td>QA 1.</td>
<td>Sind die Ein- und Ausschlusskriterien für Studienteilnehmer ausreichend / eindeutig definiert?</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>QA 2.</td>
<td>Wurden die Ein- / Ausschlusskriterien vor Beginn der Intervention festgelegt?</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>QA 3.</td>
<td>Wurde der Erkrankungsstatus valide und reliabel erfasst?</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>QBI 4.</td>
<td>Sind die diagnostischen Kriterien der Erkrankung beschrieben?</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>QB 5.</td>
<td>Ist die Studienpopulation / exponierte Population repräsentativ für die Mehrheit der exponierten Population bzw. die „Standardnutzer“ der Intervention?</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>QA 6.</td>
<td>Bei Kohortenstudien: Wurden die Studiengruppen gleichzeitig betrachtet?</td>
<td>☐</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
</tr>
</tbody>
</table>

B Zuordnung und Studienteilnahme

QA 1.	Entstammen die Exponierten / Fälle und Nicht-Exponierten / Kontrollen einer ähnlichen Grundgesamtheit?	☑	☑	☑	☑
QA 2.	Sind Interventions- / Exponierten- und Kontroll- / Nicht-Exponiertengruppen gleichzeitig zu Studienbeginn vergleichbar?	☑	☑	☑	☑
QB 3.	Erfolgte die Auswahl randomisiert mit einem standardisierten Verfahren?	☑	☑	☑	☑
QC 4.	Erfolgte die Randomisierung blind?	☑	☑	☑	☑
QA 5.	Sind bekannte / mögliche Confounder zu Studienbeginn berücksichtigt worden?	☑	☑	☑	☑

C Intervention / Exposition

QA 1.	Wurden Intervention bzw. Exposition valide, reliabel und gleichartig erfasst?	☑	☑	☑	☑
QB 2.	Wurden Interventions- / Kontrollgruppen mit Ausnahme der Intervention gleichartig therapiert?	☑	☑	☑	☑
QB 3.	Falls abweichende Therapien vorlagen, wurden diese valide und reliabel erfasst?	☑	☑	☑	☑
QA 4.	Bei RCT: Wurden für die Kontrollgruppen Placebos verwendet?	☑	☑	☑	☑
QA 5.	Bei RCT: Wurde dokumentiert wie die Placebos verabreicht wurden?	☑	☑	☑	☑

D Studienadministration

QB 1.	Gibt es Anhaltspunkte für ein “Overmatching“?	☑	☑	☑	☑
QB 2.	Waren bei Multicenterstudien die diagnostischen und therapeutischen Methoden sowie die Outcomemessung in den beteiligten Zentren identisch?	☑	☑	☑	☑
QA 3.	Wurde sichergestellt, dass Studienteilnehmer nicht zwischen Interventions- und Kontrollgruppe wechselten?	☑	☑	☑	☑

E Outcomemessung

I 1.	Wurden patientennahe Outcomeparameter verwendet?	☑	☑	☑	☑
QA 2.	Wurden die Outcomes valide und reliabel erfasst?	☑	☑	☑	☑
QB 3.	Erfolgte die Outcomemessung verblindet?	☑	☑	☑	☑
QC 4.	Bei Fallserien: Wurde die Verteilung prognostischer Faktoren ausreichend erfasst?	☑	☑	☑	☑

F Dropouts

QA 1.	War die Responderate bei Interventions- / Kontrollgruppen ausreichend hoch bzw. bei Kohortenstudien: konnte ein ausreichend großer Teil der Kohorte über die gesamte Studiendauer verfolgt werden?	☑	☑	☑	☑
QA 2.	Wurden die Gründe für Ausscheiden von Studienteilnehmern aufgelistet?	☑	☑	☑	☑
QB 3.	Wurden die Outcomes der Dropouts beschrieben und in der Auswertung berücksichtigt?	☑	☑	☑	☑
QB 4.	Falls Differenzen gefunden wurden - sind diese signifikant?	☑	☑	☑	☑
QB 5.	Falls Differenzen gefunden wurden - sind diese relevant?	☑	☑	☑	☑

G Statistische Analyse

QA 1.	Sind die beschriebenen analytischen Verfahren korrekt und die Informationen für eine einwandfreie Analyse ausreichend?	☑	☑	☑	☑
QB 2.	Wurden für Mittelwerte und Signifikanztests Konfidenzintervalle angegeben?	☑	☑	☑	☑
I 3.	Sind die Ergebnisse in graphischer Form präsentiert und wurden die den Graphiken zugrundeliegenden Werte angegeben?	☑	☑	☑	☑

Beurteilung: Die vorliegende Publikation wird: berücksichtigt ☑ ausgeschlossen ☑
Antioxidative Vitamine zur Prävention kardiovaskulärer Erkrankungen nach Nierentransplantation und bei chronischer Niereninsuffizienz

Checkliste 2a: Primärstudien (RCT / Fallkontrollstudien / Kohortenstudien / Längsschnittstudien / Fallserien)

<table>
<thead>
<tr>
<th>Bericht Nr.</th>
<th>1304 / 02.0.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Titel:</td>
<td>Vitamin C improves endothelial dysfunction in renal allograft recipients.</td>
</tr>
<tr>
<td>Autoren:</td>
<td>Williams, MJA; Sutherland, WHF; McCormick, MP; De, J; McDonald, JR; Walker, R</td>
</tr>
</tbody>
</table>

Dokumenttyp

- RCT: ☑
- Kohortenstudie: ☑
- Fallkontrollstudie: ☑
- Längsschnittstudie: ☑
- Fallserie: ☑
- Andere: ☑

A Auswahl der Studienteilnehmer

<table>
<thead>
<tr>
<th>Klas</th>
<th>Ja</th>
<th>Nein</th>
<th>?</th>
</tr>
</thead>
<tbody>
<tr>
<td>QA 1</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>QA 1</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>QA 1</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>QA 2</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>QA 2</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>QA 3</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>QA 3</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>QA 4</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>QA 4</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>QA 4</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>QA 5</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>QA 5</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
</tr>
</tbody>
</table>

B Zuordnung und Studienteilnahme

<table>
<thead>
<tr>
<th>Klas</th>
<th>Ja</th>
<th>Nein</th>
<th>?</th>
</tr>
</thead>
<tbody>
<tr>
<td>QA 1</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>QA 1</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>QA 1</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>QA 2</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>QA 2</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>QA 3</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>QA 3</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>QA 4</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>QA 4</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>QA 4</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>QA 5</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>QA 5</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
</tr>
</tbody>
</table>

C Intervention / Exposition

<table>
<thead>
<tr>
<th>Klas</th>
<th>Ja</th>
<th>Nein</th>
<th>?</th>
</tr>
</thead>
<tbody>
<tr>
<td>QA 1</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>QA 1</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>QA 2</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>QA 2</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>QA 2</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>QA 3</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>QA 3</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>QA 4</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>QA 4</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>QA 4</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>QA 5</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>QA 5</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
</tr>
</tbody>
</table>

D Studienadministration

<table>
<thead>
<tr>
<th>Klas</th>
<th>Ja</th>
<th>Nein</th>
<th>?</th>
</tr>
</thead>
<tbody>
<tr>
<td>QB 1</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>QB 2</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>QB 2</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>QB 3</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>QB 3</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>QB 4</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>QB 4</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>QB 5</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>QB 5</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
</tr>
</tbody>
</table>

E Outcomemessung

<table>
<thead>
<tr>
<th>Klas</th>
<th>Ja</th>
<th>Nein</th>
<th>?</th>
</tr>
</thead>
<tbody>
<tr>
<td>QA 1</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>QA 1</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>QA 2</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>QA 2</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>QA 2</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>QA 3</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>QA 3</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>QA 4</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>QA 4</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>QA 4</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>QA 5</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>QA 5</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
</tr>
</tbody>
</table>

F Dropouts

<table>
<thead>
<tr>
<th>Klas</th>
<th>Ja</th>
<th>Nein</th>
<th>?</th>
</tr>
</thead>
<tbody>
<tr>
<td>QA 1</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>QA 1</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>QA 2</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>QA 2</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>QA 2</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>QA 3</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>QA 3</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>QA 4</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>QA 4</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>QA 4</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>QA 5</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>QA 5</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
</tr>
</tbody>
</table>

G Statistische Analyse

<table>
<thead>
<tr>
<th>Klas</th>
<th>Ja</th>
<th>Nein</th>
<th>?</th>
</tr>
</thead>
<tbody>
<tr>
<td>QA 1</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>QA 1</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>QA 2</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>QA 2</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>QA 2</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>QA 3</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>QA 3</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>QA 4</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>QA 4</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>QA 4</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>QA 5</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>QA 5</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
</tr>
</tbody>
</table>

Beurteilung: Die vorliegende Publikation wird: berücksichtigt ☑ ausgeschlossen ☑
5.5.2 Studien zur Supplementation durch Vitamin E-beschichtete Dialysemembranen

Dokumenttyp: RCT:

Klass A Auswahl der Studienteilnehmer

QA 1	1. Sind die Ein- und Ausschlusskriterien für Studienteilnehmer ausreichend / eindeutig definiert?	Ja	Nein	
QA 2	2. Wurden die Ein- / Ausschlusskriterien vor Beginn der Intervention festgelegt?	☒	☐	☐
QA 3	3. Wurde der Erkrankungsstatus valide und reliabel erfasst?	☒	☐	☐
QBI 4	4. Sind die diagnostischen Kriterien der Erkrankung beschrieben?	☒	☒	☒
QB 5	5. Ist die Studienpopulation / exponierte Population repräsentativ für die Mehrheit der exponierten Population bzw. die „Standardnutzer“ der Intervention?	☒	☒	☒
QA 6	6. Bei Kohortenstudien: Wurden die Studiengruppen gleichzeitig betrachtet?	☒	☒	☒

B Zuordnung und Studienteilnahme

QA 1	1. Entstammen die Exponierten / Fälle und Nicht-Exponierten / Kontrollen einer ähnlichen Grundgesamtheit?	☒	☒	☒
QA 2	2. Sind Interventions- / Exponierten- und Kontroll- / Nicht-Exponiertengruppen zu Studienbeginn vergleichbar?	☒	☒	☒
QB 3	3. Erfolgte die Auswahl randomisiert mit einem standardisierten Verfahren?	☐	☒	☒
QC 4	4. Erfolgte die Randomisierung blind?	☒	☒	☒
QB 5	5. Sind bekannte / mögliche Confounder zu Studienbeginn berücksichtigt worden?	☒	☒	☒

C Intervention / Exposition

QA 1	1. Wurden Intervention bzw. Exposition valide, reliabel und gleichartig erfasst?	☒	☒	☒
QA 2	2. Wurden Interventions- / Kontrollgruppen mit Ausnahme der Intervention gleichartig therapiert?	☒	☒	☒
QB 3	3. Falls abweichende Therapien vorlagen, wurden diese valide und reliabel erfasst?	☒	☒	☒
QA 4	4. Bei RCT: Wurden für die Kontrollgruppen Placebos verwendet?	☒	☒	☒
QA 5	5. Bei RCT: Wurde dokumentiert wie die Placebos verabreicht wurden?	☒	☒	☒

D Studienadministration

QB 1	1. Gibt es Anhaltspunkte für ein „Overmatching“?	☒	☒	☒
QB 2	2. Waren bei Multicenterstudien die diagnostischen und therapeutischen Methoden sowie die Outcomemessung in den beteiligten Zentren identisch?	☒	☒	☒
QA 3	3. Wurde sichergestellt, dass Studienteilnehmer nicht zwischen Interventions- und Kontrollgruppe wechselten?	☒	☒	☒

E Outcomemessung

I 1	1. Wurden patientennahahe Outcomeparameter verwendet?	☒	☒	☒
QA 2	2. Wurden die Outcomes valide und reliabel erfasst?	☒	☒	☒
QB 3	3. Erfolgte die Outcomemessung verblindet?	☒	☒	☒
QC 4	4. Bei Fallserien: Wurde die Verteilung prognostischer Faktoren ausreichend erfasst?	☒	☒	☒

F Dropouts

QA 1	1. War die Rezidivrate bei Interventions- / Kontrollgruppen ausreichend hoch bzw. bei Kohortenstudien: konnte ein ausreichend großer Teil der Kohorte über die gesamte Studiendauer verfolgt werden?	☒	☒	☒
QA 2	2. Wurden die Gründe für Ausscheiden von Studienteilnehmern aufgelistet?	☒	☒	☒
QB 3	3. Wurden die Outcomes der Dropouts beschrieben und in der Auswertung berücksichtigt?	☒	☒	☒
QB 4	4. Falls Differenzen gefunden wurden - sind diese signifikant?	☒	☒	☒
QB 5	5. Falls Differenzen gefunden wurden - sind diese relevant?	☒	☒	☒

G Statistische Analyse

QA 1	1. Sind die beschriebenen analytischen Verfahren korrekt und die Informationen für eine einwandfreie Analyse ausreichend?	☒	☒	☒
QA 2	2. Wurden für Mittelwerte und Signifikanztests Konfidenzintervalle angegeben?	☒	☒	☒
I 3	3. Sind die Ergebnisse in graphischer Form präsentiert und wurden die den Graphiken zugrundeliegenden Werte angegeben?	☒	☒	☒

Beurteilung: Die vorliegende Publikation wird: berücksichtigt ☒ ausgeschlossen ☒
Antioxidative Vitamine zur Prävention kardiovaskulärer Erkrankungen nach Nierentransplantation und bei chronischer Niereninsuffizienz

Checkliste 2a: Primärstudien (RCT / Fallkontrollstudien / Kohortenstudien / Längsschnittstudien / Fallserien)

Bericht Nr.: 1304 / 02.0.1

Titel: Vitamin E-coated dialyzers reduce oxidative stress related proteins and markers in hemodialysis—a molecular biological approach.

Autoren: Calò, LA; Naso, A; Pagnin, E; Davis, PA; Castoro, M; Corradin, R; Riegler, P; Cascone, C; Huber, W; Piccoli, A.

Dokumenttyp RCT: ☐ Kohortenstudie: ☐ Fallkontrollstudie: ☐ Längsschnittstudie: ☐

Klas A Auswahl der Studienteilnehmer ☒ ☐ ☐ ☐

QA 1. Sind die Ein- und Ausschlusskriterien für Studienteilnehmer ausreichend / eindeutig definiert? ☒ ☐ ☐
QA 2. Wurden die Ein- / Ausschlusskriterien vor Beginn der Intervention festgelegt? ☒ ☐ ☐
QA 3. Wurde der Erkrankungsstatus valide und reliabel erfasst? ☒ ☐ ☐
QB 4. Sind die diagnostischen Kriterien der Erkrankung beschrieben? ☒ ☐ ☐
QB 5. Ist die Studienpopulation / exponierte Population repräsentativ für die Mehrheit der exponierten Population bzw. die „Standardnutzer“ der Intervention? ☒ ☐ ☐
QA 6. Bei Kohortenstudien: Wurden die Studiengruppen gleichzeitig betrachtet? ☒ ☐ ☐

B Zuordnung und Studienteilnahme

QA 1. Entstammen die Exponierten / Fälle und Nicht-Exponierten / Kontrollen einer ähnlichen Grundgesamtheit? ☒ ☐ ☐
QA 2. Sind Interventions- / Exponierten- und Kontroll- / Nicht-Exponiertengruppen zu Studienbeginn vergleichbar? ☒ ☐ ☐
QB 3. Erfolgte die Auswahl randomisiert mit einem standardisierten Verfahren? ☒ ☐ ☐
QC 4. Erfolgte die Randomisierung blind? ☒ ☐ ☐
QA 5. Sind bekannte / mögliche Confounder zu Studienbeginn berücksichtigt worden? ☒ ☐ ☐

C Intervention / Exposition

QA 1. Wurden Intervention bzw. Exposition valide, reliabel und gleichartig erfasst? ☒ ☐ ☐
QB 2. Wurden Interventions- / Kontrollgruppen mit Ausnahme der Intervention gleichartig therapiert? ☒ ☐ ☐
QB 3. Falls abweichende Therapien vorlagen, wurden diese valide und reliabel erfasst? ☒ ☐ ☐
QA 4. Bei RCT: Wurden für die Kontrollgruppen Placebos verwendet? ☒ ☐ ☐
QA 5. Bei RCT: Wurde dokumentiert wie die Placebos verabreicht wurden? ☒ ☐ ☐

D Studienadministration

QB 1. Gibt es Anhaltspunkte für ein "Overmatching"? ☒ ☐ ☐
QB 2. Waren bei Multicenterstudien die diagnostischen und therapeutischen Methoden sowie die Outcomemessung in den beteiligten Zentren identisch? ☒ ☐ ☐
QA 3. Wurde sichergestellt, dass Studienteilnehmer nicht zwischen Interventions- und Kontrollgruppe wechselten? ☒ ☐ ☐

E Outcomemessung

I 1. Wurden patientennahe Outcomeparameter verwendet? ☒ ☐ ☐
QA 2. Wurden die Outcomes valide und reliabel erfasst? ☒ ☐ ☐
QB 3. Erfolgte die Outcomemessung verblindet? ☒ ☐ ☐
QC 4. Falls Fallserien: Wurde die Verteilung prognostischer Faktoren ausreichend erfasst? ☒ ☐ ☐

F Dropouts

QA 1. War die Responderate bei Interventions- / Kontrollgruppen ausreichend hoch bzw. bei Kohortenstudien: konnte ein ausreichend großer Teil der Kohorte über die gesamte Studiendauer verfolgt werden? ☒ ☐ ☐
QA 2. Wurden die Gründe für Ausscheiden von Studienteilnehmern aufgelistet? ☒ ☐ ☐
QB 3. Wurden die Outcomes der Dropouts beschrieben und in der Auswertung berücksichtigt? ☒ ☐ ☐
QB 4. Falls Differenzen gefunden wurden - sind diese signifikant? ☒ ☐ ☐
QB 5. Falls Differenzen gefunden wurden - sind diese relevant? ☒ ☐ ☐

G Statistische Analyse

QA 1. Sind die beschriebenen analytischen Verfahren korrekt und die Informationen für eine einwandfreie Analyse ausreichend? ☒ ☐ ☐
QB 2. Wurden für Mittelwerte und Signifikanztests Konfidenzintervalle angegeben? ☒ ☐ ☐
I 3. Sind die Ergebnisse in graphischer Form präsentiert und wurden die den Graphiken zugrundeliegenden Werte angegeben? ☒ ☐ ☐

Beurteilung: Die vorliegende Publikation wird berücksichtigt ☒ ausgeschlossen ☐
Antioxidative Vitamine zur Prävention kardiovaskulärer Erkrankungen nach Nierentransplantation und bei chronischer Niereninsuffizienz

Checkliste 2a: Primärstudien (RCT / Fallkontrollstudien / Kohortenstudien / Längsschnittstudien / Fallserien)

Bericht Nr.: 1304 / 02.0.1

Titel: Vitamin E-coated dialyzer reduces oxidative stress in hemodialysis patients.

Autoren: Clermont, G; Lecour, S; Cabanne, JF; Motte, G; Guillaud, JC; Chevet, D; Rochette, L:

Quelle: Free radical biology & medicine 31 (2001). Nr. 2, S. 233-241

Dokumenttyp

- RCT: ☐
- Kohortenstudie: ☐
- Fallkontrollstudie: ☐
- Längsschnittstudie: ☐
- Fallserie: ☐
- Andere: ☐

Klas A A Auswahl der Studienteilnehmer

- Ja
- Nein

QA 1. Sind die Ein- und Ausschlusskriterien für Studienteilnehmer ausreichend / eindeutig definiert?	☒
QA 2. Wurden die Ein- / Ausschlusskriterien vor Beginn der Intervention festgelegt?	☒
QA 3. Wurde der Erkrankungsstatus valide und reliabel erfasst?	☒
QBI 4. Sind die diagnostischen Kriterien der Erkrankung beschrieben?	☒
QB 5. Ist die Studienpopulation / exponierte Population repräsentativ für die Mehrheit der exponierten Population bzw. die "Standardnutzer" der Intervention?	☒
QA 6. Bei Kohortenstudien: Wurden die Studiengruppen gleichzeitig betrachtet?	☒

B Zuordnung und Studienteilnahme

QA 1. Entstammen die Exponierten / Fälle und Nicht-Exponierten / Kontrollen einer ähnlichen Grundgesamtheit?	☒
QA 2. Sind Interventions- / Exponierten- und Kontroll- / Nicht-Exponiertengruppen zu Studienbeginn vergleichbar?	☒
QB 3. Erfolgte die Auswahl randomisiert mit einem standardisierten Verfahren?	☒
QC 4. Erfolgte die Randomisierung blind?	☒
QA 5. Sind bekannte / mögliche Confounder zu Studienbeginn berücksichtigt worden?	☒

C Intervention / Exposition

QA 1. Wurden Intervention bzw. Exposition valide, reliabel und gleichartig erfasst?	☒
QA 2. Wurden Interventions- / Kontrollgruppen mit Ausnahme der Intervention gleichartig therapiert?	☒
QB 3. Falls abweichende Therapien vorlagen, wurden diese valide und reliabel erfasst?	☒
QA 4. Bei RCTs: Wurden für die Kontrollgruppen Placebos verwendet?	☒
QA 5. Bei RCTs: Wurde dokumentiert wie die Placebos verabreicht wurden?	☒

D Studienadministration

QB 1. Gibt es Anhaltspunkte für ein "Overmatching"?	☒
QB 2. Waren bei Multicenterstudien die diagnostischen und therapeutischen Methoden sowie die Outcomemessung in den beteiligten Zentren identisch?	☒
QA 3. Wurde sichergestellt, dass Studienteilnehmer nicht zwischen Interventions- und Kontrollgruppe wechselten?	☒

E Outcomemessung

I 1. Wurden patientennahe Outcomeparameter verwandt?	☒
QA 2. Wurden die Outcomes valide und reliabel erfasst?	☒
QB 3. Erfolgte die Outcomemessung verblindet?	☒
QC 4. Bei Fallserien: Wurde die Verteilung prognostischer Faktoren ausreichend erfasst?	☒

F Dropouts

QA 1. War die Responserate bei Interventions- / Kontrollgruppen ausreichend hoch bzw. bei Kohortenstudien: konnte ein ausreichend großer Teil der Kohorte über die gesamte Studiendauer verfolgt werden?	☒
QA 2. Wurden die Gründe für Ausscheiden von Studienteilnehmern aufgelistet?	☒
QB 3. Wurden die Outcomes der Dropouts beschrieben und in der Auswertung berücksichtigt?	☒
QB 4. Falls Differenzen gefunden wurden - sind diese signifikant?	☒
QB 5. Falls Differenzen gefunden wurden - sind diese relevant?	☒

G Statistische Analyse

QA 1. Sind die beschriebenen analytischen Verfahren korrekt und die Informationen für eine einwandfreie Analyse ausreichend?	☒
QB 2. Wurden für Mittelwerte und Signifikanztests Konfidenzintervalle angegeben?	☒
I 3. Sind die Ergebnisse in graphischer Form präsentiert und wurden die den Graphiken zugrundeliegenden Werte angegeben?	☒

Beurteilung: Die vorliegende Publikation wird: ☒ berücksichtigt ausgeschlossen ☐
Antioxidative Vitamine zur Prävention kardiovaskulärer Erkrankungen nach Nierentransplantation und bei chronischer Niereninsuffizienz

Checkliste 2a: Primärtudien (RCT / Fallkontrollstudien / Kohortenstudien / Längsschnittstudien / Fallserien)

Bericht Nr.: 1304 / 02.0.1

Titel: Effects of a vitamin E-modified dialysis membrane and vitamin C infusion on oxidative stress in hemodialysis patients.

Autoren: Eiselt, J; Racek, J; Trefil, L; Opatrný, K, Jr.

Quelle: Artificial organs 25 (2001), Nr. 6, S. 430-436.

Dokumenttyp: RCT: ☒ Kohortenstudie: ☐ Fallkontrollstudie: ☐ Längsschnittstudie: ☐

<table>
<thead>
<tr>
<th>Klasse</th>
<th>A Auswahl der Studienteilnehmer</th>
<th>Ja</th>
<th>Nein</th>
<th>?</th>
</tr>
</thead>
<tbody>
<tr>
<td>QA 1.</td>
<td>Sind die Ein- und Ausschlusskriterien für Studienteilnehmer ausreichend / eindeutig definiert?</td>
<td>☒</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>QA 2.</td>
<td>Wurden die Ein- / Ausschlusskriterien vor Beginn der Intervention festgelegt?</td>
<td>☑</td>
<td>☑</td>
<td>☐</td>
</tr>
<tr>
<td>QA 3.</td>
<td>Wurde der Erkrankungsstatus valide und relaibel erfasst?</td>
<td>☐</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>QBI 4.</td>
<td>Sind die diagnostischen Kriterien der Erkrankung beschrieben?</td>
<td>☐</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>QB 5.</td>
<td>Ist die Studienpopulation / exponierte Population repräsentativ für die Mehrheit der exponierten Population bzw. die "Standardnutzer" der Intervention?</td>
<td>☐</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>QA 6.</td>
<td>Bei Kohortenstudien: Wurden die Studiengruppen gleichzeitig betrachtet?</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B Zuordnung und Studienteilnahme</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>QA 1.</td>
<td>Entstammen die Exponierten / Fälle und Nicht-Exponierten / Kontrollen einer ähnlichen Grundgesamtheit?</td>
</tr>
<tr>
<td>QA 2.</td>
<td>Sind Interventions- / Exponierten- und Kontroll- / Nicht-Exponiertengruppen zu Studienbeginn vergleichbar?</td>
</tr>
<tr>
<td>QB 3.</td>
<td>Erfolgte die Auswahl randomisiert mit einem standardisierten Verfahren?</td>
</tr>
<tr>
<td>QC 4.</td>
<td>Erfolgte die Randomisierung blind?</td>
</tr>
<tr>
<td>QA 5.</td>
<td>Sind bekannte / mögliche Confounder zu Studienbeginn berücksichtigt worden?</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>C Intervention / Exposition</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>QA 1.</td>
<td>Wurden Intervention bzw. Exposition valide, relaibel und gleichartig erfasst?</td>
</tr>
<tr>
<td>QB 2.</td>
<td>Wurden Intervention- / Kontrollgruppen mit Ausnahme der Intervention gleichartig therapiert?</td>
</tr>
<tr>
<td>QB 3.</td>
<td>Falls abweichende Therapien vorlagen, wurden diese valide und relaibel erfasst?</td>
</tr>
<tr>
<td>QA 4.</td>
<td>Bei RCT: Wurden für die Kontrollgruppe Placebos verwendet?</td>
</tr>
<tr>
<td>QA 5.</td>
<td>Bei RCT: Wurde dokumentiert wie die Placebos verabreicht wurden?</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>D Studienadministration</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>QB 1.</td>
<td>Gibt es Anhaltspunkte für ein "Overmatching"?</td>
</tr>
<tr>
<td>QB 2.</td>
<td>Waren bei Multicenterstudien die diagnostischen und therapeutischen Methoden sowie die Outcomemessung in den beteiligten Zentren identisch?</td>
</tr>
<tr>
<td>QA 3.</td>
<td>Wurde sichergestellt, dass Studienteilnehmer nicht zwischen Interventions- und Kontrollgruppe wechselten?</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>E Outcomemessung</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>I 1.</td>
<td>Wurden patientennahe Outcomeparameter verwendet?</td>
</tr>
<tr>
<td>QA 2.</td>
<td>Wurden die Outcomes valide und relaibel erfasst?</td>
</tr>
<tr>
<td>QB 3.</td>
<td>Erfolgte die Outcomemessung verblindet?</td>
</tr>
<tr>
<td>QC 4.</td>
<td>Bei Fallserien: Wurde die Verteilung prognostischer Faktoren ausreichend erfasst?</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>F Dropouts</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>QA 1.</td>
<td>War die Responderate bei Interventions- / Kontrollgruppen ausreichend hoch bzw. bei Kohortenstudien: konnte ein ausreichend großer Teil der Kohorte über die gesamte Studiendauer verfolgt werden?</td>
</tr>
<tr>
<td>QA 2.</td>
<td>Wurden die Gründe für Ausscheiden von Studienteilnehmern aufgelistet?</td>
</tr>
<tr>
<td>QB 3.</td>
<td>Wurden die Outcomes der Dropouts beschrieben und in der Auswertung berücksichtigt?</td>
</tr>
<tr>
<td>QB 4.</td>
<td>Falls Differenzen gefunden wurden - sind diese signifikant?</td>
</tr>
<tr>
<td>QB 5.</td>
<td>Falls Differenzen gefunden wurden - sind diese relevant?</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>G Statistische Analyse</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>QA 1.</td>
<td>Sind die beschriebenen analytischen Verfahren korrekt und die Informationen für eine einwandfreie Analyse ausreichend?</td>
</tr>
<tr>
<td>QB 2.</td>
<td>Wurden für Mittelwerte und Signifikanztests Konfidenzintervalle angegeben?</td>
</tr>
<tr>
<td>I 3.</td>
<td>Sind die Ergebnisse in graphischer Form präsentiert und wurden die den Graphiken zugrundeliegenden Werte angegeben?</td>
</tr>
</tbody>
</table>

Beurteilung: Die vorliegende Publikation wird: □ berücksichtigt ☒ ausgeschlossen ☐
Antioxidative Vitamine zur Prävention kardiovaskulärer Erkrankungen nach Nierentransplantation und bei chronischer Niereninsuffizienz

Checkliste 2a: Primärstudien (RCT / Fall-Kontrollstudien / Kohortenstudien / Längsschnittstudien / Fallserien)

<table>
<thead>
<tr>
<th>Bericht Nr.:</th>
<th>1304 / 02.0.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Titel:</td>
<td>Reduction of Oxidized Low-Density Lipoprotein by the Long-Term Use of Vitamin E-Coated Dialyzers in Hemodialysis Patients</td>
</tr>
<tr>
<td>Autoren:</td>
<td>Hara, T; Takahashi, N; Kiyomoto, H; Aki, Y; Fujikawa, H; Shokoji, T; Matsubara, K; Moriwaki, K; Kondo, N; Kiyomoto, K; Hirohata, M; Ishizu, T; Akiyama, K; Nishiyama, A; Ohmori, K; Kohno, M</td>
</tr>
<tr>
<td>Quelle:</td>
<td>Dialysis and Transplantation 33 (2004). Nr. 4, S. 197-207</td>
</tr>
<tr>
<td>Dokumenttyp</td>
<td>RCT: ☐ Kohortenstudie: ☐ Fallkontrollstudie: ☐ Längsschnittstudien: ☐</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Klas</th>
<th>A Auswahl der Studienteilnehmer</th>
<th>Ja</th>
</tr>
</thead>
<tbody>
<tr>
<td>QA 1</td>
<td>Sind die Ein- und Ausschlusskriterien für Studienteilnehmer ausreichend / eindeutig definiert?</td>
<td>☐</td>
</tr>
<tr>
<td>QA 2</td>
<td>Wurden die Ein-/ Ausschlusskriterien vor Beginn der Intervention festgelegt?</td>
<td>☐</td>
</tr>
<tr>
<td>QA 3</td>
<td>Wurde der Erkrankungsstatus valide und reliabel erfasst?</td>
<td>☐</td>
</tr>
<tr>
<td>QBI 4</td>
<td>Sind die diagnostischen Kriterien der Erkrankung beschrieben?</td>
<td>☐</td>
</tr>
<tr>
<td>QB 5</td>
<td>Ist die Studienpopulation / exponierte Population repräsentativ für die Mehrheit der exponierten Population bzw. die "Standardnutzer" der Intervention?</td>
<td>☐</td>
</tr>
<tr>
<td>QA 6</td>
<td>Bei Kohortenstudien: Wurden die Studiengruppen gleichzeitig betrachtet?</td>
<td>☐</td>
</tr>
</tbody>
</table>

B Zuordnung und Studienteilnahme		
QA 1	Entstammen die Exponierten / Fälle und Nicht-Exponierten / Kontrollen einer ähnlichen Grundgesamtheit?	☐
QA 2	Sind Interventions- / Exponierten- und Kontroll- / Nicht-Exponiertengruppen zu Studienbeginn vergleichbar?	☐
QB 3	Erfolgte die Auswahl randomisiert mit einem standardisierten Verfahren?	☐
QC 4	Erfolgte die Randomisierung blind?	☐
QA 5	Sind bekannte / mögliche Confounder zu Studienbeginn berücksichtigt worden?	☐

C Intervention / Exposition		
QA 1	Wurden Intervention bzw. Exposition valide, relabel und gleichartig erfasst?	☒
QB 2	Wurden Interventions- / Kontrollgruppen mit Ausnahme der Intervention gleichartig therapiert?	☒
QB 3	Falls abweichende Therapien vorlagen, wurden diese valide und relabel erfasst?	☐
QA 4	Bei RCT: Wurden für die Kontrollgruppen Placebos verwendet?	☐
QA 5	Bei RCT: Wurde dokumentiert wie die Placebos verabreicht wurden?	☐

D Studienadministration		
QB 1	Gibt es Anhaltspunkte für ein "Overmatching"?	☐
QB 2	Waren bei Multicenterstudien die diagnostischen und therapeutischen Methoden sowie die Outcome-Messung in den beteiligten Zentren identisch?	☐
QA 3	Wurde sichergestellt, dass Studienteilnehmer nicht zwischen Interventions- und Kontrollgruppe wechselten?	☒

E Outcomemessung		
I 1	Wurden patientennahe Outcomeparameter verwendet?	☐
QA 2	Wurden die Outcomes valide und relabel erfasst?	☐
QB 3	Erfolgte die Outcomemessung verblindet?	☐
QC 4	Bei Fallserien: Wurde die Verteilung prognostischer Faktoren ausreichend erfasst?	☒

F Dropouts		
QA 1	War die die Responderte bei Interventions-/ Kontrollgruppen ausreichend hoch bzw. bei Kohortenstudien: konnte ein ausreichend großer Teil der Kohorte über die gesamte Studiendauer verfolgt werden?	☐
QA 2	Wurden die Gründe für Ausscheiden von Studienteilnehmern aufgelistet?	☐
QB 3	Wurden die Outcomes der Dropouts beschrieben und in der Auswertung berücksichtigt?	☐
QB 4	Falls Differenzen gefunden wurden - sind diese signifikant?	☐
QB 5	Falls Differenzen gefunden wurden - sind diese relevant?	☐

G Statistische Analyse		
QA 1	Sind die beschriebenen analytischen Verfahren korrekt und die Informationen für eine einwandfreie Analyse ausreichend?	☐
QB 2	Wurden für Mittelwerte und Signifikanzttests Konfidenzintervalle angegeben?	☒
I 3	Sind die Ergebnisse in graphischer Form präsentiert und wurden die den Graphiken zugrundeliegenden Werte angegeben?	☐

Beurteilung: Die vorliegende Publikation wird: berücksichtigt ☒ ausgeschlossen ☐
Antioxidative Vitamine zur Prävention kardiovaskulärer Erkrankungen nach Nierentransplantation und bei chronischer Niereninsuffizienz

Checkliste 2a: Primärstudien (RCT / Fallkontrollstudien / Kohortenstudien / Längsschnittstudien / Fallserien)

Bericht Nr.: 1304 / 02.0.1
Titel: Vitamin E-bonded hemodialyzer improves atherosclerosis associated with a rheological improvement of circulating red blood cells.
Autoren: Kobayashi, S; Moriya, H; Aso, K; Ohtake
Quelle: Kidney international 63 (2003). Nr. 5, S. 1881-1887.

Dokumenttyp
- RCT: ☑
- Kohortenstudie: ☑
- Fallkontrollstudie: ☑

Klass A Auswahl der Studienteilnehmer

<table>
<thead>
<tr>
<th>Klasse</th>
<th>Ja</th>
<th>Nein</th>
<th>?</th>
</tr>
</thead>
<tbody>
<tr>
<td>QA 1.</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>QA 2.</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>QA 3.</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>QB 4.</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>QB 5.</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>QB 6.</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
</tr>
</tbody>
</table>

B Zuordnung und Studienteilnahme

<table>
<thead>
<tr>
<th>Klasse</th>
<th>Ja</th>
<th>Nein</th>
<th>?</th>
</tr>
</thead>
<tbody>
<tr>
<td>QA 1.</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>QA 2.</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>QA 3.</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>QB 4.</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>QB 5.</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>QB 6.</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
</tr>
</tbody>
</table>

C Intervention / Exposition

<table>
<thead>
<tr>
<th>Klasse</th>
<th>Ja</th>
<th>Nein</th>
<th>?</th>
</tr>
</thead>
<tbody>
<tr>
<td>QA 1.</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>QB 2.</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>QB 3.</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>QA 4.</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>QA 5.</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
</tr>
</tbody>
</table>

D Studienadministration

<table>
<thead>
<tr>
<th>Klasse</th>
<th>Ja</th>
<th>Nein</th>
<th>?</th>
</tr>
</thead>
<tbody>
<tr>
<td>QB 1.</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>QB 2.</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>QA 3.</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
</tr>
</tbody>
</table>

E Outcomemessung

<table>
<thead>
<tr>
<th>Klasse</th>
<th>Ja</th>
<th>Nein</th>
<th>?</th>
</tr>
</thead>
<tbody>
<tr>
<td>QA 1.</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>QA 2.</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>QB 3.</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>QC 4.</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
</tr>
</tbody>
</table>

F Dropouts

<table>
<thead>
<tr>
<th>Klasse</th>
<th>Ja</th>
<th>Nein</th>
<th>?</th>
</tr>
</thead>
<tbody>
<tr>
<td>QA 1.</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>QA 2.</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>QB 3.</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>QB 4.</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>QB 5.</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
</tr>
</tbody>
</table>

G Statistische Analyse

<table>
<thead>
<tr>
<th>Klasse</th>
<th>Ja</th>
<th>Nein</th>
<th>?</th>
</tr>
</thead>
<tbody>
<tr>
<td>QA 1.</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>QB 2.</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>I 3.</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
</tr>
</tbody>
</table>

Beurteilung: Die vorliegende Publikation wird: berücksichtigt ☑ ausgeschlossen ☑
Antioxidative Vitamine zur Prävention kardiovaskulärer Erkrankungen nach Nierentransplantation und bei chronischer Niereninsuffizienz

Checkliste 2a: Primärstudien (RCT / Fallkontrollstudien / Kohortenstudien / Längsschnittstudien / Fallserien)

Bericht Nr.: 1304 / 02.0.1

Titel: Effects of LDL apheresis and vitamin E-modified membrane on carotid atherosclerosis in hemodialyzed patients with arteriosclerosis obliterans.

Autoren: Nakamura, T; Kawagoe, Y; Matsuda, T; Takahashi, Y; Sekizuka, K; Ebihara, I; Koide, H

Quelle: Kidney & blood pressure research 26 (2003). Nr. 3, S. 185-191.

Dokumenttyp

- RCT:
- Kohortenstudie:
- Fallkontrollstudie:
- Fallserie:
- Längsschnittstudie:

<table>
<thead>
<tr>
<th>Klas</th>
<th>A Auswahl der Studienteilnehmer</th>
</tr>
</thead>
<tbody>
<tr>
<td>QA 1.</td>
<td>Sind die Ein- und Ausschlusskriterien für Studienteilnehmer ausreichend / eindeutig definiert?</td>
</tr>
<tr>
<td>QA 2.</td>
<td>Wurden die Ein- / Ausschlusskriterien vor Beginn der Intervention festgelegt?</td>
</tr>
<tr>
<td>QA 3.</td>
<td>Wurde der Erkrankungsstatus valide und reliabel erfasst?</td>
</tr>
<tr>
<td>QBI 4.</td>
<td>Sind die diagnostischen Kriterien der Erkrankung beschrieben?</td>
</tr>
<tr>
<td>QB 5.</td>
<td>Ist die Studienpopulation / exponierte Population repräsentativ für die Mehrheit der exponierten Population bzw. die "Standardnutzer" der Intervention?</td>
</tr>
</tbody>
</table>

B Zuordnung und Studienteilnahme

QA 1.	Entstammen die Exponierten / Fälle und Nicht-Exponierten / Kontrollen einer ähnlichen Grundgesamtheit?	☐ Nein
QB 3.	Erfolgte die Auswahl randomisiert mit einem standardisierten Verfahren?	☐ Nein
QC 4.	Erfolgte die Randomisierung blind?	☐ Nein
QA 5.	Sind bekannte / mögliche Confounder zu Studienbeginn berücksichtigt worden?	☐ Nein

C Intervention / Exposition

| QA 1. | Wurden Intervention bzw. Exposition valide, reliabel und gleichartig erfasst? | ☐ Nein |
| QB 3. | Falls abweichende Therapien vorlagen, wurden diese valide und reliable erfasst? | ☐ Nein |

D Studienadministration

QB 1.	Gibt es Anhaltspunkte für ein "Overmatching"?	☐ Nein
QB 2.	Waren bei Multicenterstudien die diagnostischen und therapeutischen Methoden sowie die Outcomemessung in den beteiligten Zentren identisch?	☐ Nein
QA 3.	Wurde sichergestellt, dass Studienteilnehmer nicht zwischen Interventions- und Kontrollgruppe wechselten?	☐ Nein

E Outcomemessung

I 1.	Wurden patientennahe Outcomeparameter verwendet?	☐ Nein
QA 2.	Wurden die Outcomes valide und reliabel erfasst?	☐ Nein
QB 3.	Erfolgte die Outcomemessung verblindet?	☐ Nein

F Dropouts

QA 1.	War die Responderate bei Interventions- / Kontrollgruppen ausreichend hoch bzw. bei Kohortenstudien: konnte ein ausreichend großer Teil der Kohorte über die gesamte Studiendauer verfolgt werden?	☐ Nein
QA 2.	Wurden die Gründe für Ausscheiden von Studienteilnehmern aufgelistet?	☐ Nein
QB 3.	Wurden die Outcomes der Dropouts beschrieben und in der Auswertung berücksichtigt?	☐ Nein
QB 4.	Falls Differenzen gefunden wurden - sind diese signifikant?	☐ Nein
QB 5.	Falls Differenzen gefunden wurden - sind diese relevant?	☐ Nein

G Statistische Analyse

QA 1.	Sind die beschriebenen analytischen Verfahren korrekt und die Informationen für eine einwandfreie Analyse ausreichend?	☐ Nein
QB 2.	Wurden für Mittelwerte und Signifikanztests Konfidenzintervalle angegeben?	☐ Nein
I 3.	Sind die Ergebnisse in graphischer Form präsentiert und wurden die den Graphiken zugrundeliegenden Werte angegeben?	☐ Nein

Beurteilung: Die vorliegende Publikation wird: berücksichtigt ☑ ausgeschlossen ☐
Antioxidative Vitamine zur Prävention kardiovaskulärer Erkrankungen nach Nierentransplantation und bei chronischer Niereninsuffizienz

Checkliste 2a: Primärstudien (RCT / Fallkontrollstudien / Kohortenstudien / Längsschnittstudien / Fallserien)

Bericht Nr.: 1304 / 02.0.1

Titel: Vitamin E-modified filters modulate Jun N-terminal kinase activation in peripheral blood mononuclear cells.

Autoren: Pertosa, G; Grandaliano, G; Soccio, M; Martino, C; Gesualdo, L; Schena, FP

Dokumenttyp: RCT: ☑ Kohortenstudie: ☑ Fallkontrollstudie: ☑ Längsschnittstudie: ☑

Klasse A Auswahl der Studienteilnehmer

Fallserie: ☑ Andere: ☑ Ja ☑ Nein ?

QA 1. Sind die Ein- und Ausschlusskriterien für Studienteilnehmer ausreichend / eindeutig definiert? ☑ ☑ ☑

QA 2. Wurden die Ein-/ Ausschlusskriterien vor Beginn der Intervention festgelegt? ☑ ☑ ☑

QA 3. Wurde die Erkrankungsstatus valide und reliabel erfasst? ☑ ☑ ☑

QB 4. Sind die diagnostischen Kriterien der Erkrankung beschrieben? ☑ ☑ ☑

QB 5. Ist die Studienpopulation / exponierte Population repräsentativ für die Mehrheit der exponierten Population bzw. die "Standardnutzer" der Intervention? ☑ ☑ ☑

QA 6. Bei Kohortenstudien: Wurden die Studiengruppen gleichzeitig betrachtet? ☑ ☑ ☑

B Zuordnung und Studienteilnahme

QA 1. Entstammen die Exponierten / Fälle und Nicht-Exponierten / Kontrollen einer ähnlichen Grundgesamtheit? ☑ ☑ ☑

QA 2. Sind Interventions- / Exponierten- und Kontroll-/ Nicht-Exponiertengruppen zu Studienbeginn vergleichbar? ☑ ☑ ☑

QB 3. Wurde die Auswahl randomisiert mit einem standardisierten Verfahren? ☑ ☑ ☑

QC 4. Erfolgte die Randomisierung blind? ☑ ☑ ☑

QA 5. Sind bekannte / mögliche Confounder zu Studienbeginn berücksichtigt worden? ☑ ☑ ☑

C Intervention / Exposition

QA 1. Wurden Intervention bzw. Exposition valide, reliabel und gleichartig erfasst? ☑ ☑ ☑

QB 2. Wurden Interventions- / Kontrollgruppen mit Ausnahme der Intervention gleichartig therapiert? ☑ ☑ ☑

QB 3. Falls abweichende Therapien vorlagen, wurden diese valide und reliabel erfasst? ☑ ☑ ☑

QA 4. Bei RCT: Wurden für die Kontrollgruppen Placebos verwendet? ☑ ☑ ☑

QA 5. Bei RCT: Wurde dokumentiert wie die Placebos verabreicht wurden? ☑ ☑ ☑

D Studienadministration

QB 1. Gibt es Anhaltspunkte für ein "Overmatching"? ☑ ☑ ☑

QB 2. Waren bei Multicenterstudien die diagnostischen und therapeutischen Methoden sowie die Outcomemessung in den beteiligten Zentren identisch? ☑ ☑ ☑

QA 3. Wurde sichergestellt, dass Studienteilnehmer nicht zwischen Interventions- und Kontrollgruppe wechselten? ☑ ☑ ☑

E Outcomemessung

I 1. Wurden patientennahe Outcomeparameter verwendet? ☑ ☑ ☑

QA 2. Wurden die Outcomes valide und reliabel erfasst? ☑ ☑ ☑

QB 3. Erfolgte die Outcomemessung verblindet? ☑ ☑ ☑

QC 4. Bei Fallserien: Wurde die Verteilung prognostischer Faktoren ausreichend erfasst? ☑ ☑ ☑

F Dropouts

QA 1. War die Responderate bei Interventions-/ Kontrollgruppen ausreichend hoch bzw. bei Kohortenstudien: konnte ein ausreichend großer Teil der Kohorte über die gesamte Studiendauer verfolgt werden? ☑ ☑ ☑

QA 2. Wurden die Gründe für Ausscheiden von Studienteilnehmern aufgelistet? ☑ ☑ ☑

QB 3. Wurden die Outcomes der Dropouts beschrieben und in der Auswertung berücksichtigt? ☑ ☑ ☑

QB 4. Falls Differenzen gefunden wurden - sind diese signifikant? ☑ ☑ ☑

QB 5. Falls Differenzen gefunden wurden - sind diese relevant? ☑ ☑ ☑

G Statistische Analyse

QA 1. Sind die beschriebenen analytischen Verfahren korrekt und die Informationen für eine einwandfreie Analyse ausreichend? ☑ ☑ ☑

QB 2. Wurden für Mittelwerte und Signifikanztests Konfidenzintervalle angegeben? ☑ ☑ ☑

I 3. Sind die Ergebnisse in graphischer Form präsentiert und wurden die den Graphiken zugrundeliegenden Werte angegeben? ☑ ☑ ☑

Beurteilung: Die vorliegende Publikation wird: berücksichtigt ☑ ausgeschlossen ☑
Antioxidative Vitamine zur Prävention kardiovaskulärer Erkrankungen nach Nierentransplantation und bei chronischer Niereninsuffizienz

Checkliste 2a: Primärstudien (RCT / Fall-Kontrollstudien / Kohortenstudien / Längsschnittstudien / Fallserien)

<table>
<thead>
<tr>
<th>Bericht Nr.:</th>
<th>1304 / 02.0.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Titel:</td>
<td>Effect of vitamin E-bonded membrane on the 8-hydroxy 2'-deoxyguanosine level in leukocyte DNA of hemodialysis patients.</td>
</tr>
<tr>
<td>Autoren:</td>
<td>Tamg, DC; Huang, TP; Liu, TY; Chen, HW; Sung, YJ; Wei, YH</td>
</tr>
<tr>
<td>Dokumenttyp</td>
<td>RCT: ☐ Kohortenstudie: ☐ Fallkontrollstudie: ☐ Längsschnittstudie: ☐</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Klas</th>
<th>A Auswahl der Studienteilnehmer</th>
<th>Ja</th>
<th>Nein</th>
<th>?</th>
</tr>
</thead>
<tbody>
<tr>
<td>QA</td>
<td>1. Sind die Ein- und Ausschlusskriterien für Studienteilnehmer ausreichend / eindeutig definiert?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>QA</td>
<td>2. Wurden die Ein- / Ausschlusskriterien vor Beginn der Intervention festgelegt?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>QA</td>
<td>3. Wurde der Erkrankungsstatus valide und reliabel erfasst?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>QBI</td>
<td>4. Sind die diagnostischen Kriterien der Erkrankung beschrieben?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>QB</td>
<td>5. Ist die Studienpopulation / exponierte Population repräsentativ für die Mehrheit der exponierten Population bzw. die "Standardnutzer" der Intervention?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>QA</td>
<td>6. Bei Kohortenstudien: Wurden die Studiengruppen gleichzeitig betrachtet?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>

B Zuordnung und Studienteilnahme

QA	1. Entstammen die Exponierten / Fälle und Nicht-Exponierten / Kontrollen einer ähnlichen Grundgesamtheit?	☐	☐	☐
QA	2. Sind Interventions- / Exponierten- und Kontroll- / Nicht-Exponiertengruppen zu Studienbeginn vergleichbar?	☐	☐	☐
QB	3. Erfolgte die Auswahl randomisiert mit einem standardisierten Verfahren?	☐	☐	☐
QC	4. Erfolgte die Randomisierung blind?	☐	☐	☐
QA	5. Sind bekannte / mögliche Confounder zu Studienbeginn berücksichtigt worden?	☐	☐	☐

C Intervention / Exposition

QA	1. Wurden Intervention bzw. Exposition valide, reliabel und gleichartig erfasst?	☐	☐	☐
QA	2. Wurden Interventions- / Kontrollgruppen mit Ausnahme der Intervention gleichartig therapiert?	☐	☐	☐
QB	3. Falls abweichende Therapien vorlagen, wurden diese valide und reliabel erfasst?	☐	☐	☐
QA	4. Bei RCT: Wurden für die Kontrollgruppen Placebos verwendet?	☐	☐	☐
QA	5. Bei RCT: Wurde dokumentiert wie die Placebos verabreicht wurden?	☐	☐	☐

D Studienadministration

QB	1. Gibt es Anhaltspunkte für ein "Overmatching"?	☐	☐	☐
QB	2. Waren bei Multicenterstudien die diagnostischen und therapeutischen Methoden sowie die Outcomemessung in den beteiligten Zentren identisch?	☐	☐	☐
QA	3. Wurde sichergestellt, dass Studienteilnehmer nicht zwischen Interventions- und Kontrollgruppe wechselten?	☐	☐	☐

E Outcomemessung

I	1. Wurden patientennahe Outlineparameter verwendet?	☐	☐	☐
QA	2. Wurden die Outcomes valide und reliabel erfasst?	☐	☐	☐
QB	3. Erfolgte die Outcomemessung verblindet?	☐	☐	☐
QC	4. Bei Fallserien: Wurde die Verteilung prognostischer Faktoren ausreichend erfasst?	☐	☐	☐

F Dropouts

QA	1. War dieResponderate bei Interventions- / Kontrollgruppen ausreichend hoch bzw. bei Kohortenstudien: konnte ein ausreichend großer Teil der Kohorte über die gesamte Studiendauer verfolgt werden?	☐	☐	☐
QA	2. Wurden die Gründe für Ausscheiden von Studienteilnehmern aufgelistet?	☐	☐	☐
QB	3. Wurden die Outcomes der Dropouts beschrieben und in der Auswertung berücksichtigt?	☐	☐	☐
QB	4. Falls Differenzen gefunden wurden - sind diese signifikant?	☐	☐	☐
QB	5. Falls Differenzen gefunden wurden - sind diese relevant?	☐	☐	☐

G Statistische Analyse

QA	1. Sind die beschriebenen analytischen Verfahren korrekt und die Informationen für eine einwandfreie Analyse ausreichend?	☐	☐	☐
QB	2. Wurden für Mittelwerte und Signifikanztests Konfidenzintervalle angegeben?	☐	☐	☐
I	3. Sind die Ergebnisse in graphischer Form präsentiert und wurden die den Graphiken zugrundeliegenden Werte angegeben?	☐	☐	☐

Beurteilung: Die vorliegende Publikation wird: berücksichtigt ☐ ausgeschlossen ☐
<table>
<thead>
<tr>
<th>Klassifizierungsphase</th>
<th>Kriterium</th>
<th>Ja</th>
<th>Nein</th>
<th>?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bericht Nr.</td>
<td></td>
<td>1304 / 02.0.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Titel:</td>
<td>Vitamin E-bonded hemodialyzer improves neutrophil function and oxidative stress in patients with end-stage renal failure.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Autoren:</td>
<td>Tsuruoka, S; Kawaguchi, A; Nishiki, K; Hayasaka, T; Fukushima, C; Sugimoto, K; Saito, T; Fujimura, A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quelle:</td>
<td>American journal of kidney diseases: the official journal of the National Kidney Foundation 39 (2002). Nr. 1, S. 127-133</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dokumenttyp</td>
<td>RCT:</td>
<td>☐ Kohortenstudie: ☐ Fallkontrollstudie: ☐ Längsschnittstudie: ☐</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fallserie:</td>
<td>☐ Andere:</td>
<td>☐</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A Auswahl der Studienteilnehmer</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| QA 1. | Sind die Ein- und Ausschlusskriterien für Studienteilnehmer ausreichend / eindeutig definiert? | ☐ | ☐ | ☝
| QA 2. | Wurden die Ein- / Ausschlusskriterien vor Beginn der Intervention festgelegt? | ☐ | ☐ | ☝
| QA 3. | Wurde der Erkrankungsstatus valide und reliabel erfasst? | ☐ | ☐ | ☝
| QB 4. | Sind die diagnostischen Kriterien der Erkrankung beschrieben? | ☐ | ☐ | ☝
| QB 5. | Ist die Studienpopulation / exponierte Population repräsentativ für die Mehrheit der exponierten Population bzw. die ”Standardnutzer“ der Intervention? | ☒ | ☐ | ☝
| QA 6. | Bei Kohortenstudien: Wurden die Studiengruppen gleichzeitig betrachtet? | ☒ | ☐ | ☝
| **B Zuordnung und Studienteilnahme** | | | | |
| QA 1. | Entstammen die Exponierten / Fälle und Nicht-Exponierten / Kontrollen einer ähnlichen Grundgesamtheit? | ☐ | ☐ | ☝
| QA 2. | Sind Interventions- / Exponierten- und Kontroll- / Nicht-Exponiertengruppen zu Studienbeginn vergleichbar? | ☐ | ☐ | ☝
| QB 3. | Erfolgte die Auswahl randomisiert mit einem standardisierten Verfahren? | ☒ | ☐ | ☝
| QC 4. | Erfolgte die Randomisierung blind? | ☒ | ☐ | ☝
| QA 5. | Sind bekannte / mögliche Confounder zu Studienbeginn berücksichtigt worden? | ☒ | ☐ | ☝
| **C Intervention / Exposition** | | | | |
| QA 1. | Wurden Intervention bzw. Exposition valide, reliabel und gleichartig erfasst? | ☐ | ☐ | ☝
| QB 2. | Wurden Interventions- / Kontrollgruppen mit Ausnahme der Intervention gleichartig therapiert? | ☒ | ☐ | ☝
| QB 3. | Falls abweichende Therapien vorlagen, wurden diese valide und reliabel erfasst? | ☐ | ☐ | ☝
| QB 4. | Bei RCT: Wurden für die Kontrollgruppen Placebos verwendet? | ☐ | ☐ | ☝
| QB 5. | Bei RCT: Wurde dokumentiert wie die Placebos verabreicht wurden? | ☒ | ☐ | ☝
| **D Studienadministration** | | | | |
| QB 1. | Gibt es Anhaltspunkte für ein “Overmatching“? | ☐ | ☐ | ☝
| QB 2. | Waren bei Multicenterstudien die diagnostischen und therapeutischen Methoden sowie die Outcomemessung in den beteiligten Zentren identisch? | ☒ | ☐ | ☝
| QA 3. | Wurde sichergestellt, dass Studienteilnehmer nicht zwischen Interventions- und Kontrollgruppe wechselten? | ☒ | ☐ | ☝
| **E Outcomemessung** | | | | |
| I 1. | Wurden patientennahe Outcomeparameter verwendet? | ☐ | ☐ | ☝
| QA 2. | Wurden die Outcomes valide und reliabel erfasst? | ☐ | ☐ | ☝
| QB 3. | Erfolgte die Outcomemessung verblindet? | ☐ | ☐ | ☝
| QC 4. | Bei Fallserien: Wurde die Verteilung prognostischer Faktoren ausreichend erfasst? | ☐ | ☐ | ☝
| **F Dropouts** | | | | |
| QA 1. | War die Rezessionäre bei Interventions- / Kontrollgruppen ausreichend hoch bzw. bei Kohortenstudien: konnte ein ausreichend großer Teil der Kohorte über die gesamte Studiendauer verfolgt werden? | ☒ | ☐ | ☝
| QA 2. | Wurden die Gründe für Ausscheiden von Studienteilnehmern aufgelistet? | ☐ | ☐ | ☝
| QB 3. | Wurden die Outcomes der Dropouts beschrieben und in der Auswertung berücksichtigt? | ☐ | ☐ | ☝
| QB 4. | Falls Differenzen gefunden wurden - sind diese signifikant? | ☐ | ☐ | ☝
| QB 5. | Falls Differenzen gefunden wurden - sind diese relevant? | ☐ | ☐ | ☝
| **G Statistische Analyse** | | | | |
| QA 1. | Sind die beschriebenen analytischen Verfahren korrekt und die Informationen für eine einwandfreie Analyse ausreichend? | ☐ | ☐ | ☝
| QB 2. | Wurden für Mittelwerte und Signifikanztests Konfidenzintervalle angegeben? | ☐ | ☐ | ☝
| I 3. | Sind die Ergebnisse in graphischer Form präsentiert und wurden die den Graphiken zugrundeliegenden Werte angegeben? | ☐ | ☐ | ☝

Beurteilung: Die vorliegende Publikation wird: ☐ berücksichtigt ☝ ausgeschlossen ☐
<table>
<thead>
<tr>
<th>Klas</th>
<th>A Auswahl der Studienteilnehmer</th>
<th>Ja</th>
<th>Nein</th>
<th>?</th>
</tr>
</thead>
<tbody>
<tr>
<td>QA</td>
<td>1. Sind die Ein- und Ausschlusskriterien für Studienteilnehmer ausreichend / eindeutig definiert?</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>QA</td>
<td>2. Wurden die Ein- / Ausschlusskriterien vor Beginn der Intervention festgelegt?</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>QA</td>
<td>3. Wurde der Erkrankungsstatus valide und reliabel erfasst?</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>QBI</td>
<td>4. Sind die diagnostischen Kriterien der Erkrankung beschrieben?</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>QB</td>
<td>5. Ist die Studienpopulation / exponierte Population repräsentativ für die Mehrheit der exponierten Population bzw. die "Standardnutzer" der Intervention?</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>QA</td>
<td>6. Bei Kohortenstudien: Wurden die Studiengruppen gleichzeitig betrachtet?</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
</tr>
</tbody>
</table>

B Zuordnung und Studienteilnahme

QA	1. Entstammen die Exponierten / Fälle und Nicht-Exponierten / Kontrollen einer ähnlichen Grundgesamtheit?	☑	☑	☑
QA	2. Sind Interventions- / Exponierten- und Kontroll- / Nicht-Exponiertengruppen zu Studienbeginn vergleichbar?	☑	☑	☑
QB	3. Erfolgte die Auswahl randomisiert mit einem standardisierten Verfahren?	☑	☑	☑
QC	4. Erfolgte die Randomisierung blind?	☑	☑	☑
QA	5. Sind bekannte / mögliche Confounder zu Studienbeginn berücksichtigt worden?	☑	☑	☑

C Intervention / Exposition

QA	1. Wurden Intervention bzw. Exposition valide, reliabel und gleichartig erfasst?	☑	☑	☑
QB	2. Wurden Interventions- / Kontrollgruppen mit Ausnahme der Intervention gleichartig therapiert?	☑	☑	☑
QB	3. Falls abweichende Therapien vorlagen, wurden diese valide und reliabel erfasst?	☑	☑	☑
QA	4. Bei RCT: Wurden für die Kontrollgruppen Placebos verwendet?	☑	☑	☑
QA	5. Bei RCT: Wurde dokumentiert wie die Placebos verabreicht wurden?	☑	☑	☑

D Studienadministration

QB	1. Gibt es Anhaltspunkte für ein "Overmatching"?	☑	☑	☑
QB	2. Waren bei Multicenterstudien die diagnostischen und therapeutischen Methoden sowie die Outcomemessung in den beteiligten Zentren identisch?	☑	☑	☑
QA	3. Wurde sichergestellt, dass Studienteilnehmer nicht zwischen Interventions- und Kontrollgruppe wechselten?	☑	☑	☑

E Outcomemessung

QA	1. Wurden patientennahe Outcomeparameter verwendet?	☑	☑	☑
QA	2. Wurden die Outcomes valide und reliabel erfasst?	☑	☑	☑
QB	3. Erfolgte die Outcomemessung verblindet?	☑	☑	☑
QC	4. Bei Fallserien: Wurde die Verteilung prognostischer Faktoren ausreichend erfasst?	☑	☑	☑

F Dropouts

QA	1. War die Responderate bei Interventions- / Kontrollgruppen ausreichend hoch bzw. bei Kohortenstudien: konnte ein ausreichend großer Teil der Kohorte über die gesamte Studiendauer verfolgt werden?	☑	☑	☑
QA	2. Wurden die Gründe für Ausscheiden von Studienteilnehmern aufgelistet?	☑	☑	☑
QB	3. Wurden die Outcomes der Dropouts beschrieben und in der Auswertung berücksichtigt?	☑	☑	☑
QB	4. Falls Differenzen gefunden wurden - sind diese signifikant?	☑	☑	☑
QB	5. Falls Differenzen gefunden wurden - sind diese relevant?	☑	☑	☑

G Statistische Analyse

QA	1. Sind die beschriebenen analytischen Verfahren korrekt und die Informationen für eine einwandfreie Analyse ausreichend?	☑	☑	☑
QB	2. Wurden für Mittelwerte und Signifikanztests Konfidenzintervalle angegeben?	☑	☑	☑
I	3. Sind die Ergebnisse in graphischer Form präsentiert und wurden die den Graphiken zugrundeliegenden Werte angegeben?	☑	☑	☑

Beurteilung: Die vorliegende Publikation wird: berücksichtigt ☑ ausgeschlossen ☑
5.6 Checkliste für die ökonomische Bewertung

Checkliste 3

<table>
<thead>
<tr>
<th>Checkliste methodischen Qualität</th>
</tr>
</thead>
<tbody>
<tr>
<td>Autoren, Titel und Publikationsorgan:</td>
</tr>
<tr>
<td>1 = Kriterium erfüllt</td>
</tr>
<tr>
<td>½ = Kriterium teilweise erfüllt</td>
</tr>
<tr>
<td>0 = Kriterium nicht erfüllt</td>
</tr>
<tr>
<td>nr = nicht relevant</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fragestellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Wurde die Fragestellung präzise formuliert?</td>
</tr>
<tr>
<td>2. Wurde der medizinische und ökonomische Problemkontext ausreichend dargestellt?</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Evaluationsrahmen</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Wurden alle in die Studie einbezogenen Technologien hinreichend detailliert beschrieben?</td>
</tr>
<tr>
<td>4. Wurden alle im Rahmen der Fragestellung relevanten Technologien verglichen?</td>
</tr>
<tr>
<td>5. Wurde die Auswahl der Vergleichstechnologien schlüssig begründet?</td>
</tr>
<tr>
<td>6. Wurde die Zielpopulation klar beschrieben?</td>
</tr>
<tr>
<td>7. Wurde ein für die Fragestellung angemessener Zeithorizont für Kosten und Gesundheitseffekte gewählt und angegeben?</td>
</tr>
<tr>
<td>8. Wurde der Typ der Gesundheitsökonomischen Evaluation explizit genannt?</td>
</tr>
<tr>
<td>9. Wurden sowohl Kosten als auch Gesundheitseffekte untersucht?</td>
</tr>
<tr>
<td>10. Wurde die Perspektive der Untersuchung eindeutig gewählt und explizit genannt?</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Analysemethoden und Modellierung</th>
</tr>
</thead>
<tbody>
<tr>
<td>11. Wurden adäquate statistische Tests / Modelle zur Analyse der Daten gewählt und hinreichend gründlich beschrieben?</td>
</tr>
<tr>
<td>12. Wurden in entscheidungsanalytischen Modellen die Modellstruktur und alle Parameter vollständig und nachvollziehbar dokumentiert (in der Publikation bzw. einem technischen Report)?</td>
</tr>
<tr>
<td>13. Wurden die relevanten Annahmen explizit formuliert?</td>
</tr>
<tr>
<td>14. Wurden in entscheidungsanalytischen Modellen adäquate Datenquellen für die Pfadwahrscheinlichkeiten gewählt und eindeutig genannt?</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Gesundheitseffekte</th>
</tr>
</thead>
<tbody>
<tr>
<td>15. Wurden alle für die gewählte Perspektive und den gewählten Zeithorizont relevanten Gesundheitszustände berücksichtigt und explizit aufgeführt?</td>
</tr>
<tr>
<td>16. Wurden adäquate Quellen für die Gesundheitseffektdaten gewählt und eindeutig genannt?</td>
</tr>
<tr>
<td>17. Wurden das epidemiologische Studiendesign und die Auswertungsmethoden adäquat gewählt und beschrieben und wurden die Ergebnisse detailliert dargestellt? (falls auf einer einzelnen Studie basierend)</td>
</tr>
<tr>
<td>18. Wurden angemessene Methoden zur Identifikation, Extraktion und Synthese der Effektparameter verwendet und wurden sie detailliert beschrieben? (falls auf einer Informationssynthese basierend)</td>
</tr>
<tr>
<td>19. Wurden die verschiedenen Gesundheitszustände mit Präferenzen bewertet und dafür geeignete Methoden und Meßinstrumente gewählt und angegeben?</td>
</tr>
<tr>
<td>20. Wurden adäquate Quellen der Bewertungsdaten für die Gesundheitszustände gewählt und eindeutig genannt?</td>
</tr>
<tr>
<td>21. Wurde die Evidenz der Gesundheitseffekte ausreichend belegt? (s. ggf. entsprechende Kontextdokumente)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kosten</th>
</tr>
</thead>
<tbody>
<tr>
<td>22. Wurden die den Kosten zugrunde liegenden Mengengerüste hinreichend gründlich dargestellt?</td>
</tr>
<tr>
<td>23. Wurden adäquate Quellen und Methoden zur Ermittlung der Mengengerüste gewählt und eindeutig genannt?</td>
</tr>
<tr>
<td>24. Wurden die den Kosten zugrunde liegenden Preiserüste hinreichend gründlich beschrieben?</td>
</tr>
<tr>
<td>25. Wurden adäquate Quellen und Methoden zur Ermittlung der Preise gewählt und eindeutig genannt?</td>
</tr>
<tr>
<td>26. Wurden die einbezogenen Kosten anhand der gewählten Perspektive und des gewählten Zeithorizontes schlüssig begründet und wurden alle relevanten Kosten berücksichtigt?</td>
</tr>
<tr>
<td>27. Wurden Daten zu Produktivitätsausfallskosten (falls berücksichtigt) getrennt aufgeführt und methodisch korrekt in die Analyse einbezogen?</td>
</tr>
<tr>
<td>28. Wurde die Währung genannt?</td>
</tr>
<tr>
<td>29. Wurden Währungskonversionen adäquat durchgeführt?</td>
</tr>
<tr>
<td>30. Wurden Preisanpassungen bei Inflation oder Deflation adäquat durchgeführt?</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Diskontierung</th>
</tr>
</thead>
<tbody>
<tr>
<td>31. Wurden zukünftige Gesundheitseffekte und Kosten adäquat diskontiert?</td>
</tr>
<tr>
<td>32. Wurde das Referenzjahr für die Diskontierung angegeben bzw. bei fehlender Diskontierung das Referenzjahr für die Kosten?</td>
</tr>
<tr>
<td>33. Wurden die Diskontraten angegeben?</td>
</tr>
<tr>
<td>34. Wurde die Wahl der Diskontraten bzw. der Verzicht auf eine Diskontierung plausibel begründet?</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ergebnispräsentation</th>
</tr>
</thead>
<tbody>
<tr>
<td>35. Wurden Maßnahmen zur Modellvalidierung ergriffen und beschrieben?</td>
</tr>
<tr>
<td>36. Wurden absolute Gesundheitseffekte und absolute Kosten jeweils pro Kopf bestimmt und dargestellt?</td>
</tr>
<tr>
<td>37. Wurden inkrementelle Gesundheitseffekte und inkrementelle Kosten jeweils pro Kopf bestimmt und dargestellt?</td>
</tr>
<tr>
<td>38. Wurde eine für den Typ der gesundheitsökonomischen Evaluation sinnvolle Maßzahl für die Relation zwischen Kosten und Gesundheitseffekt angegeben?</td>
</tr>
<tr>
<td>39. Wurden reine (nicht lebensqualitätsadjugierte) klinische Effekte berichtet?</td>
</tr>
<tr>
<td>40. Wurden die relevanten Ergebnisse in disaggregierter Form dargestellt?</td>
</tr>
<tr>
<td>41. Wurden populationsaggregierte Kosten und Gesundheitseffekte dargestellt?</td>
</tr>
</tbody>
</table>
Checkliste methodischen Qualität

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Behandlung von Unsicherheiten</td>
<td></td>
</tr>
<tr>
<td>42.</td>
<td>Wurden univariate Sensitivitätsanalysen für die relevanten Parameter durchgeführt?</td>
</tr>
<tr>
<td>43.</td>
<td>Wurden multivariate Sensitivitätsanalysen für die relevanten Parameter durchgeführt?</td>
</tr>
<tr>
<td>44.</td>
<td>Wurde Sensitivitätsanalysen für die relevanten strukturellen Elemente durchgeführt?</td>
</tr>
<tr>
<td>45.</td>
<td>Wurden in den Sensitivitätsanalysen realistische Werte oder Wertebereiche bzw. Strukturvarianten berücksichtigt und angegeben?</td>
</tr>
<tr>
<td>46.</td>
<td>Wurden die Ergebnisse der Sensitivitätsanalysen hinreichend dokumentiert?</td>
</tr>
<tr>
<td>47.</td>
<td>Wurden adäquate statistische Inferenzmethoden (statistische Tests, Konfidenzintervalle) für stochastische Daten eingesetzt und die Ergebnisse berichtet?</td>
</tr>
</tbody>
</table>

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Diskussion</td>
<td></td>
</tr>
<tr>
<td>48.</td>
<td>Wurde die Datenqualität kritisch beurteilt?</td>
</tr>
<tr>
<td>49.</td>
<td>Wurden Richtung und Größe des Einflusses unsicherer oder verzerrter Parameterschätzungen auf das Ergebnis konsistent diskutiert?</td>
</tr>
<tr>
<td>50.</td>
<td>Wurde Richtung und Größe des Einflusses struktureller Modellanahmen auf das Ergebnis konsistent diskutiert?</td>
</tr>
<tr>
<td>51.</td>
<td>Wurden die wesentlichen Einschränkungen und Schwächen der Studie diskutiert?</td>
</tr>
<tr>
<td>52.</td>
<td>Wurden plausible Angaben zur Generalisierbarkeit der Ergebnisse gemacht?</td>
</tr>
<tr>
<td>53.</td>
<td>Wurden wichtige ethische und Verteilungsfragen diskutiert?</td>
</tr>
<tr>
<td>54.</td>
<td>Wurde das Ergebnis sinnvoll im Kontext mit unabhängigen Gesundheitsprogrammen diskutiert?</td>
</tr>
</tbody>
</table>

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Schlussfolgerungen</td>
<td></td>
</tr>
<tr>
<td>55.</td>
<td>Wurden in konsistenter Weise Schlußfolgerungen aus den berichteten Daten / Ergebnissen abgeleitet?</td>
</tr>
<tr>
<td>56.</td>
<td>Wurde eine auf Wissensstand und Studienergebnissen basierende Antwort auf die Fragestellung gegeben?</td>
</tr>
</tbody>
</table>
5.7 Extraktionstabellen

5.7.1 Studien zur oralen Supplementation und Infusion von antioxidativen Vitaminen

<table>
<thead>
<tr>
<th>Quelle</th>
<th>Boaz 2000, SPACE-Studie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fragestellung</td>
<td>Auswirkung von hochdosierter Vitamin E-Supplementierung auf kardiovaskuläre Erkrankungen bei Hämodialysepatienten, die bereits eine kardiovaskuläre Vorerkrankung zeigen.</td>
</tr>
<tr>
<td>Ort der Rekrutierung und Setting</td>
<td>Fünf Dialysezentren, die der Sackler Medical Faculty, Tel Aviv University angegliedert sind (E Wolfson Medical Centre, Ichilov Hospital Medical Centre, Rabin Medical Centre-Golda Campus, Asaf Harofeh Medical Centre, Chaim Sheba Medical Centre) und einem Dialysezentrum, das dem nationalen Gesundheitsorganisation angehört (Nephromor Givatayim)</td>
</tr>
<tr>
<td>Studientyp</td>
<td>Randomisierte kontrollierte Studie mit verdeckter Allokation</td>
</tr>
<tr>
<td>Evidenzniveau</td>
<td>I</td>
</tr>
<tr>
<td>Intervention</td>
<td>Verum 1</td>
</tr>
<tr>
<td>Orale Vitamin E –Dosis von 800 IU/Tag in zwei Kapseln a 400 IU</td>
<td></td>
</tr>
<tr>
<td>Intervention Kontrolle</td>
<td>Placebo, das dem Erscheinungsbild des Vitaminpräparats entspricht</td>
</tr>
<tr>
<td>Zuweisung der Intervention</td>
<td>Randomisierte, verdeckte Zuweisung der Patienten, die nach Geschlecht und Alter (in Fünf-Jahres-Kategorien) stratifiziert wurden</td>
</tr>
<tr>
<td>Art der Randomisierung</td>
<td>Computergenerierte Auslosung der Patienten eines Stratums, für jedes Dialysezentrum wurde separat randomisiert</td>
</tr>
<tr>
<td>Verblindung</td>
<td>Ärzte und Patienten</td>
</tr>
<tr>
<td>Primäre Zielgrößen</td>
<td>Kombinierte Ereignisrate aus akutem Myokardinfarkt (tödlich oder nicht-tödlich), Schlaganfall, peripherer vaskulärer Erkrankung und instabile Angina</td>
</tr>
<tr>
<td>Sekundäre Zielgrößen</td>
<td>Akuter Myokardinfarkt (tödlich oder nicht-tödlich), kardiovaskuläre Mortalität (tödlicher Myokardinfarkt, Schlaganfall oder plötzlicher Tod), Gesamt mortalität, Schlaganfall, periphere vaskuläre Erkrankung und instabile Angina</td>
</tr>
<tr>
<td>Anzahl Zentren</td>
<td>5</td>
</tr>
<tr>
<td>Anzahl Gruppen</td>
<td>2</td>
</tr>
<tr>
<td>Intervention Verum</td>
<td>Orale Vitamin E –Dosis von 800 IU/Tag in zwei Kapseln a 400 IU</td>
</tr>
<tr>
<td>Intervention Kontrolle</td>
<td>Placebo, das dem Erscheinungsbild des Vitaminpräparats entspricht</td>
</tr>
<tr>
<td>Zuweisung der Intervention</td>
<td>Randomisierte, verdeckte Zuweisung der Patienten, die nach Geschlecht und Alter (in Fünf-Jahres-Kategorien) stratifiziert wurden</td>
</tr>
<tr>
<td>Art der Randomisierung</td>
<td>Computergenerierte Auslosung der Patienten eines Stratums, für jedes Dialysezentrum wurde separat randomisiert</td>
</tr>
<tr>
<td>Verblindung</td>
<td>Ärzte und Patienten</td>
</tr>
<tr>
<td>Primäre Zielgrößen</td>
<td>Kombinierte Ereignisrate aus akutem Myokardinfarkt (tödlich oder nicht-tödlich), Schlaganfall, peripherer vaskulärer Erkrankung und instabile Angina</td>
</tr>
<tr>
<td>Sekundäre Zielgrößen</td>
<td>Akuter Myokardinfarkt (tödlich oder nicht-tödlich), kardiovaskuläre Mortalität (tödlicher Myokardinfarkt, Schlaganfall oder plötzlicher Tod), Gesamt mortalität, Schlaganfall, periphere vaskuläre Erkrankung und instabile Angina</td>
</tr>
<tr>
<td>Anzahl eligibler Patienten</td>
<td>243</td>
</tr>
</tbody>
</table>
Quelle: Boaz 2000, SPACE-Studie

Anzahl eingeschlossener Patienten pro Gruppe	Placebo: 99 Vitamin E: 97
Anzahl Patienten mit ausgewerteten Ergebnissen	196
Dropouts	Keine
Patienten-Charakteristika	Beschrieben wurden Alter, Geschlecht, Art der Nierenerkrankung, Bluthochdruck, Diabetes, Rauchgewohnheit, Art der kardiovaskulären Vorerkrankung, frühere Revaskularisation, relevante Blutparameter wie Vitamin E-Konzentration, Hämoglobin, MDA, Parathormon, Cholesterin und Medikation.
Vergleichbarkeit	Die Patientencharakteristika zu Beginn der Studie unterschieden sich nicht statistisch signifikant zwischen den Gruppen. Beim Raucherstatus traten jedoch deutliche Unterschiede auf. 24,7 % bei Vitamin E und 14,1 % in Placebo-Gruppe. Die Begleitmedikation war vergleichbar.
Ergebnisse	Signifikante Unterschiede zwischen den Gruppen wurden bei folgenden primären Zielgrößen gefunden: 15 (16 %) der 97 Patienten unter Vitamin E-Supplementation wiesen einen Endpunkt der kombinierten Ereignisrate auf und 33 (33 %) der 99 Patienten unter Placebo. Das RR beträgt demnach 0,46 (95 %KI 0,27-0,78) p = 0,014. 5 (5,1 %) der Patienten unter Vitamin E-Supplementation erlitten einen (nicht-tödlichen) Myokardinfarkt und 17 (17,2 %) der Patienten unter Placebo: RR: 0,3 (95 %KI 0,11-0,78 p = 0,016). Dabei beziehen sich die Angaben auf die jeweilige Zielgröße ohne plötzliche Todesfälle. Unter Einbeziehung der plötzlichen Todesfälle bleibt hier ein signifikanter Unterschied bestehen (0,54 (0,33-0,89) p = 0,016) bzw. 0,45 (0,20-0,99) p = 0,04). Alle anderen Zielgrößen (tödlicher Myokardinfarkt, tödlich verlaufender Schlaganfall und plötzlicher Tod) zeigten keine signifikanten Unterschiede zwischen den Behandlungsgruppen. Die Cox-Regressionsmodell mit Adjustierung gegenüber dem Raucherstatus zeigte, dass die Wahrscheinlichkeit für ein ereignisfreies Überleben bezogen auf die kombinierte Ereignisrate unter Vitamin E-Supplementation größer ist, als ohne: RR: 0,44 (0,2-2,09), p = 0,02. Die Kaplan-Meier-Kurve für die kombinierte Ereignisrate unterschied sich signifikant (p = 0,014). Die Zahl der aufgetretenen Myokardinfarkte unterschied sich signifikant RR: 0,30 (0,10-0,80), p = 0,016 bzw. unter Einschluss der plötzlichen Todesfälle RR: 0,45 (0,20-0,99), p = 0,04. Die Anzahl der tödlich verlaufenden Myokardinfarkte unterschied sich jedoch nicht mehr signifikant RR: 0,26 (0,06-1,17), p = 0,1. beziehen sich jedoch nicht mehr signifikant RR: 0,26 (0,06-1,17), p = 0,1. bzw. unter Einschluss der plötzlichen Todesfälle RR: 0,57 (0,20-1,60), p = 0,3. Die Kaplan-Meier-Kurven für Myokardinfarkt der beiden Behandlungsgruppen unterschieden sich signifikant voneinander (p = 0,01). Allerdings ist dieser Effekt in der Coxregression mit Adjustierung auf aktuelle Rauchgewohnheiten nicht mehr als signifikant nachzuweisen RR: 0,36 (0,12-1,08) p = 0,1. Alle anderen sekundären Zielgrößen (tödlicher Myokardinfarkt, tödlich verlaufender Schlaganfall und plötzlicher Tod) zeigten keine signifikanten Unterschiede zwischen den Behandlungsgruppen.
Schlussfolgerung der Autoren	Die Studie zeigt, dass eine Vitamin E-Supplementation von 800 IU/Tag bei Hämodialysepatienten alle kardiovaskulären Ereignisse und die Zahl der Myokardinfarke reduziert.
Kommentar	Adäquates Randomisierungsverfahren, Failzahlplanung, genügend langes Follow-Up, adäquate statistische Analysen

IU = International Units. KI = Konfidenzintervall. MDA = Malondialdehyd. RR = Relatives Risiko.
Antioxidative Vitamine zur Prävention kardiovaskulärer Erkrankungen nach Nierentransplantation und bei chronischer Niereninsuffizienz

<table>
<thead>
<tr>
<th>Quelle</th>
<th>Chao et al. 2002</th>
</tr>
</thead>
</table>

Fragestellung
Auswirkung von Vitaminsupplementierung auf das antioxidative System gemessen anhand der Konzentration der Antioxidantien im Blut, dem Gesamtstatus der Antioxidantien und der Lipidperoxidation bei Hämodialysepatienten und der Effekte nach der Beendigung der Supplementation

Ort der Rekrutierung und Setting
Taipeh Universitätsklinik

Zeitraum der Rekrutierung
Keine Angabe

Studientyp
Nicht-randomisierte, placebokontrollierte, doppelblinde, prospektive Interventionsstudie

Evidenzniveau
IIa

Ein-/ Ausschlusskriterien

Anzahl Zentren
1

Anzahl Gruppen
4 (Anmerkung: 5. Gruppe: gesunde Patienten ohne Hämodialyse und ohne Intervention für Fragestellung nicht von Interesse)

<table>
<thead>
<tr>
<th>Intervention</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intervention 1</td>
<td>Orale Gabe von Vitamin E, 400 mg nach der Dialysesitzung sechs Wochen lang</td>
</tr>
<tr>
<td>Intervention 2</td>
<td>Orale Gabe von Vitamin C, 400 mg, nach der Dialysesitzung sechs Wochen lang</td>
</tr>
<tr>
<td>Intervention 3</td>
<td>Orale Gabe von Vitamin C+E je 400 mg nach der Dialysesitzung sechs Wochen lang</td>
</tr>
<tr>
<td>Intervention Kontrolle</td>
<td>Orale Gabe von Placebo 400 mg Stärke nach der Dialysesitzung sechs Wochen lang</td>
</tr>
</tbody>
</table>

Zuweisung der Intervention
Keine Randomisierung; Die Gruppen wurden hinsichtlich Geschlechtsverteilung, Alter, Schweregrad der Erkrankung, medikamentöser Therapie und Dauer der Dialyseaabhängigkeit gematcht

Art der Randomisierung
Nicht relevant

Verblindung
Ärzte und Patienten

Follow-Up
Sechs Wochen Supplementation und bis vier Wochen nach Beendigung der Supplementation Messungen. Messungen nach drei, sechs, acht, zehn Wochen.

Primäre Zielgrößen
Keine Fallzahlplanung

Sekundäre Zielgrößen
Vitamin C-Konzentration, Vitamin E-Konzentration, antioxidativer Gesamtstatus, Konzentration der Lipidperoxide (MDA und 4-HNA) im Blutplasma, reduziertes Glutathion in Erythrozyten

Statistische Analyse

Anzahl eligibler Patienten
Keine Angabe

Anzahl eingeschlossener Patienten pro Gruppe
Placebo: 8
Vitamin C: 10
Vitamin E: 10
Vitamin C + E: 10

Anzahl Patienten mit ausgewerteten Ergebnissen
Verschiedene Anzahl zu verschiedenen Messzeitpunkten
Nach sechs Wochen: Placebo: 8, Vitamin C: 10, Vitamin E: 8
Nach zehn Wochen: Placebo: 7, Vitamin C: 8, Vitamin E: 8

Dropouts
Einer in Placebogruppe (verstorben), einer in Vitamin C-Gruppe (schlechter Gesundheitszustand), zwei in Vitamin E-Gruppe (schlechter Gesundheitszustand), einer in Vitamin C + E-Gruppe (verlegt)
Patientencharakteristika
Beschrieben wurden Alter, Geschlecht, Anteil mit kardiovaskulären Erkrankungen (nicht definiert), Diabetes mellitus, Erythropoetintherapie, BMI, Dauer der Dialyseabhängigkeit, Plasmalbuminkonzentration, Gesamtcholesterin, Triglyceride, Vitamin C-Konzentration im Plasma. Es wurde eine ausführliche Dokumentation der Nahrungsaufnahme durchgeführt.

Vergleichbarkeit

Ergebnisse

Hinsichtlich der Plasmalipidperoxidation waren die Werte bei den Vitamin-supplementierten Gruppen signifikant niedriger als in der Placebo- und bei den Vitamin-supplementierten Gruppen auch gegenüber den Ausgangswerten. Nach zehn Wochen hatten die Vitamin C- und die Vitamin C + E-statistisch signifikant niedrigere Werte als die Placebo und die Vitamin C-Gruppe.

Schlussfolgerung der Autoren
Vitamin C + E-Supplementation dreimal pro Woche sechs Wochen lang kann die Vitamin C-, Erythrozyten-Glutathionkonzentration und der antioxidative Gesamtstatus zumindest auf ein normales Niveau erhöhen bzw. die Lipidperoxidation zu senken. Die orale Applikation von kombinierten Vitamin C und E-Gaben ist hilfreich zur Prävention kardiovaskulärer Krankheiten durch die Verbesserung des antioxidativen Status bei Hämodialysepatienten.

Kommentar

Quelle: Chao et al. 2002

BMI= Body Mass Index. **4-HNE =** 4-((hydroxy-2(E))-nonenal. **MDA =** Malondialdehyde.
Antioxidative Vitamine zur Prävention kardiovaskulärer Erkrankungen nach Nierentransplantation und bei chronischer Niereninsuffizienz

Quelle
Khajehdehi 1998

Fragenstellung
Effekte einer Vitaminssupplementation auf das Lipidprofil bei Hämodialysepatienten

Ort der Rekrutierung und Setting
Skandinavien

Zeitraum der Rekrutierung
Keine Angabe

Studientyp
Randomisierte, kontrollierte Studie

Evidenzniveau
IIa, Herabstufung wegen fehlenden Angaben zur Art der Randomisierung und zum Concealment

Ein-/ Ausschlusskriterien
Keine direkte Angabe, Hämodialysepatienten, die nicht mit Vitaminen oder Lipidsenkern behandelt worden waren

Anzahl Zentren
Keine Angabe

Anzahl Gruppen
4

Intervention

Verum 1
Vitamin C: 200 mg/Tag

Intervention
Verum 2
Vitamin E: 200 mg/Tag

Intervention
Verum 3
Vitamin D3: 50000 IU/Tag

Intervention Kontrolle
Placebo

Zuweisung der Intervention
Keine Angabe, ob verdeckt

Art der Randomisierung
Patienten

Verblindung
Keine

Follow-Up
Drei Monate

Primäre Zielgrößen
Keine Fallzahlplanung

Sekundäre Zielgrößen
Serum Triglyceride, Cholesterin (total), LDL-c, HDL-c, Verhältnis von Triglyceride / HDL-c, LDL-c / HDL-c, Cholesterin / HDL-c

Statistische Analyse
Der Vergleich der Ergebnisse der vier Behandlungsgruppen wurde mit ANOVA durchgeführt, zum Vergleich der vorher-nachher Effekte in den jeweiligen Behandlungsgruppen wurde Student’s-t-Test für verbundene Stichproben herangezogen. Die Ergebnisse wurden mit dem Mittelwert und der Standardabweichung angegeben. Der p-Wert wurde mit einem Wert < 0,05 als signifikant gewertet.

Anzahl eligibler Patienten
Keine Angabe

Anzahl eingeschlossener Patienten pro Gruppe
Vitamin C: 21
Vitamin E: 21
Vitamin D3: 21
Placebo: 21

Anzahl Patienten mit ausgewerteten Ergebnissen
Vitamin C: 15
Vitamin E: 21
Vitamin D3: 15
Placebo: 14

Dropouts
19 (zwölf Patienten wurden transplantiert, vier vergaßen die Vitamineinnahme und zwei weigerten sich, die Vitamine weiterhin zu nehmen.)

Patientencharakteristika

Vergleichbarkeit
Die Patientencharakteristika unterschieden sich nicht-statistisch signifikant zwischen den Gruppen hinsichtlich Alter, Geschlecht, Nierensteine (Nephrolithiasis). Statistisch signifikante Unterschiede bei Lipidwerten zu Beginn der Studie

DAHTA@DIMDI 129
Antioxidative Vitamine zur Prävention kardiovaskulärer Erkrankungen nach Nierentransplantation und bei chronischer Niereninsuffizienz

Fortsetzung: Khajehdehi 1998

| Ergebnisse | Beim Vergleich der vier Gruppen konnte eine positive Auswirkung der Vitamintherapie auf das Lipidprofil festgestellt werden: Vitamin D zeigte den größten Effekt auf das Serum-Triglyceride 7,16 mmol/l vs. 6,41 mmol/l (p = 0,001), Vitamin C auf Cholesterin 6,23 mmol/l vs. 5,45 mmol/l (p = 0,001) und LDL-c 6,63 mmol/l vs. 5,45 mmol/l (p = 0,0001) und Vitamin E auf HDL-c 0,81 zu 0,93 (p = 0,001). Die Serumkonzentrationsverhältnisse von LDL-c zu HDL-c und Cholesterin zu HDL-c unter Vitamin C-Gabe sanken von 4,85 zu 4,11 (p = 0,0001) bzw. von 6,86 vs. 6,03 (p = 0,0001). Unter Vitamin D-Gabe reduzierte sich das Verhältnis von Triglyceriden zu HDL-c 7,35 vs. 6,37 (p = 0,0001). Unter Vitamin E-Gabe reduzierte sich das Serumkonzentrationsverhältnis LDL-c zu HDL-c von 4,36 vs. 3,81 (p = 0,003). Bei den Analysen der Konzentrationsverhältnisse wurde nicht auf einen Vergleich zwischen den Interventionen und Placebo oder eine Gruppenvergleich eingegangen. |

HDL-c = High Density Lipoprotein Cholesterol. IU = International Unit. LDL-c = Low Density Lipoprotein Cholesterol.

Quelle	Mann 2004
Fragestellung	Post-Hoc-Analyse von Daten der HOPE-Studie zur Abschätzung der Effekte von Vitamin E-Supplementation auf kardiovaskuläre Erkrankungen bei Patienten mit milder bis moderater Niereninsuffizienz
Ort der Rekrutierung und Setting	Multizentrische internationale Studie in 19 europäischen, Nord- und südamerikanischen Staaten
Zeitraum der Rekrutierung	Ab 1993, keine genauen Angaben dazu
Studientyp	Post-Hoc-Analyse des „Vitamin E-Arms“ der HOPE-Studie, einer multizentrischen, doppelblinden, randomisierten, placebokontrollierten Studie mit 2 x 2-faktoriellem Design
Evidenzniveau	I
Ein-/ Ausschlusskriterien	Einschlusskriterien: Serumkreatinin-Werte zwischen 1,4 mg/dl und 2,3 mg/dl, 55 Jahre oder älter, kardiovaskuläre Erkrankungen wie eine Koronarerkrankung, eine arterielle Verschlusskrankheit oder einen erlittenen Schlaganfall. Ebenfalls eingeschlossen wurden Diabetiker, wenn sie einen Risikofaktor für kardiovaskuläre Erkrankungen aufwiesen, Mikroalbuminurie hatten oder Raucher waren. Ausschlusskriterien: Nachgewiesene Proteinurie, ein Serumkreatinin von über 2,3 mg/dl, Patienten mit manifester Herzinsuffizienz und eingeschränkter Linksventrikelfunktion, Hyperkalämie, unkontrollierter Bluthochdruck, Myokardinfarkt, instabiler Angina oder ein Schlaganfall, der im Zeitraum eines Monats vor Studienbeginn erlitten wurde. Patienten mit Unverträglichkeit von ACE-Hemmern oder Vitamin E.
Anzahl Zentren	267
Anzahl Gruppen	2 x 2
Intervention Verum 1	400 IU/Tag Vitamin E
Intervention Kontrollen	Placebo
Zuweisung der Intervention	Randomisiert
Art der Randomisierung	Nicht beschrieben
Verblindung	Nicht beschrieben
Follow-Up	Durchschnittlich 4,5 Jahre
Antioxidative Vitamine zur Prävention kardiovaskulärer Erkrankungen nach Nierentransplantation und bei chronischer Niereninsuffizienz

Fortsetzung: Mann 2004

<table>
<thead>
<tr>
<th>Quelle</th>
<th>Mann 2004</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primäre Zielgrößen</td>
<td>Kombinierte Ereignisse: Tod kardiovaskulärer Ursache, Myokardinfarkt, Schlaganfall</td>
</tr>
<tr>
<td>Sekundäre Zielgrößen</td>
<td>Gesamtmortalität, Revascularisation, Hospitalisierungen wegen einer instabilen Angina pectoris oder eine Herzinsuffizienz und Entwicklung einer Nephropatie.</td>
</tr>
</tbody>
</table>

Anzahl eligibler Patienten	993
Anzahl eingeschlossener Patienten pro Gruppe	Vitamin E: 499, Placebo: 494
Anzahl Patienten mit ausgewerteten Ergebnissen	993 (100 % der Daten der Vitamin E- und 99,9 % der Daten der Placebogruppe wurden am Ende der Studie ermittelt.)
Dropouts	Vitamin E-Gruppe: 0 %, Placebogruppe 0,1 %
Patientencharakteristika	Beschrieben wurden Alter, Geschlecht, Art der kardiovaskulären Vorerkrankung, das Vorliegen von Risikofaktoren für eine kardiovaskuläre Erkrankung wie Bluthochdruck, Diabetes und Rauchgewohnheit, Basisdaten von Körpergewicht und -umfang, Herzfrequenz Blutdruck und Kreatinin und Medikation
Vergleichbarkeit	Die Patientencharakteristika zu Beginn der Studie unterschieden sich nicht-statistisch signifikant zwischen den Gruppen (p > 0,05).
Ergebnisse	Insgesamt wurden 224 primäre und 585 sekundäre Zielgrößen ermittelt. In der Vitamin E-Gruppe wurde bei 115 (23 %) Teilnehmern ein Endpunkt der kombinierten Ereignisrate verzeichnet, in der Placebogruppe bei 109 (22,1 %) Teilnehmern. Die HR wird mit 1,03 (p = 0,82) angegeben. Damit lassen sich in dieser Kategorie keine signifikanten Unterschiede feststellen. Die Raten der einzelnen aufgeführten Ereignisse Myokardinfarkt, Schlaganfall oder Tod aufgrund kardiovaskulärer Ursache wiesen keine signifikanten Unterschiede zwischen den Behandlungsgruppen auf. Auch die Anzahl der sekundären Zielgrößen wies keine signifikanten Unterschiede auf. Die Gesamtmortalität in beiden Gruppen (85 in der Vitamin E- und 93 in der Placebogruppe) (HR = 0,88, p = 0,40) war ähnlich und nicht-signifikant unterschiedlich.

ACE = Angiotensin Converting Enzyme. HR = Hazard Ratio. RR = Relatives Risiko.
<table>
<thead>
<tr>
<th>Quelle</th>
<th>Roob 2000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fragestellung</td>
<td>Schwächt eine Vitamin E-Supplementation den oxidativen Stress bei Hämodialysepatienten, der von intravenösen Eisengaben verursacht wird?</td>
</tr>
<tr>
<td>Ort der Rekrutierung und Setting</td>
<td>Österreich</td>
</tr>
<tr>
<td>Zeitraum der Rekrutierung</td>
<td>Keine Angabe</td>
</tr>
<tr>
<td>Studientyp</td>
<td>Randomisierte Studie mit „Cross-Over“-Design und zwei Studienabschnitten</td>
</tr>
<tr>
<td>Evidenzniveau</td>
<td>IIa Herabstufung weil keine Angabe zum Concealment und zur Art der Randomisierung</td>
</tr>
<tr>
<td>Ein- / Ausschlusskriterien</td>
<td>Einschlusskriterium: Serumferritinkonzentrationen von < 100µg/l und / oder TSAT 20 % mindestens einen Monat vor dem Start der Studie Ausschlusskriterien nicht angegeben</td>
</tr>
<tr>
<td>Anzahl Zentren</td>
<td>Keine Angabe</td>
</tr>
<tr>
<td>Anzahl Gruppen</td>
<td>2</td>
</tr>
<tr>
<td>Intervention Verum 1</td>
<td>Studie A: Einzelne orale Gabe von 1200 IU Vitamin E sechs Stunden vor der Hämodialyse, Infusion eines Eisen (III) hydroxid- Sucrose Komplexes, die 30 Minuten nach Beginn begonnen und 20 Minuten nach Ende der Hämodialyse beendet wurde. Studie B: Einzelne orale Gabe von 1200 IU Vitamin E sechs Stunden vor der Hämodialyse, keine Eiseninfusion</td>
</tr>
<tr>
<td>Intervention Kontrolle</td>
<td>Studie A: Keine Gabe von Vitamin E, Infusion eines Eisen (III) hydroxid- Sucrose Komplexes, die 30 Minuten nach Beginn der Hämodialyse begonnen und 20 Minuten nach Ende der Hämodialyse beendet wurde. Studie B: keine Vitamin E-Gabe, keine Eiseninfusion</td>
</tr>
<tr>
<td>Zuweisung der Intervention</td>
<td>Keine Angabe</td>
</tr>
<tr>
<td>Art der Randomisierung</td>
<td>Keine Angabe</td>
</tr>
<tr>
<td>Verblindung</td>
<td>Keine Angabe</td>
</tr>
<tr>
<td>Follow-Up</td>
<td>Messungen zu Beginn der Eiseninfusion und zur 30., 60., 90., 135. und 180. Minute</td>
</tr>
<tr>
<td>Primäre Zielgrößen</td>
<td>AUC (von 0 bis 180 min) der Raten von MDA zu Cholesterin und vom Gesamtperoxid zu Cholesterin, Plasma-Vitamin E-Konzentration, Verhältnis von Vitamin E zu Cholesterin, Plasma MDA-Konzentration, freies Eisen (Bleomycineisen)</td>
</tr>
<tr>
<td>Sekundäre Zielgrößen</td>
<td>Für Studie A wurde der t-Test für verbundene Stichproben verwendet um die Differenzen der Quotienten von MDA zu Cholesterin und vom Gesamtperoxid im Plasma zu Cholesterin zu analysieren. Verglichen wurden die AUC (0 bis 180 min) der Quotienten. Angegeben wurden Mittelwerte und Standardabweichungen. Der Vergleich der Patientencharakteristika zu Beginn der Studie und zum Vergleich der Lipidperoxidation in den verschiedenen Gruppen wurde mit zweifacher ANOVA und als Posttest Tukey durchgeführt.</td>
</tr>
<tr>
<td>Statistische Analyse</td>
<td>Keine Fallzahlberechnung angegeben</td>
</tr>
<tr>
<td>Anzahl eligibler Patienten</td>
<td>Keine Angabe</td>
</tr>
<tr>
<td>Anzahl eingeschlossener Patienten pro Gruppe</td>
<td>22</td>
</tr>
<tr>
<td>Anzahl Patienten mit ausgewerteten Ergebnissen</td>
<td>22</td>
</tr>
<tr>
<td>Dropouts</td>
<td>Keine</td>
</tr>
<tr>
<td>Vergleichbarkeit</td>
<td>„Cross-Over“-Design an identischen Patienten, eventuell „Carry-Over“-Effekt</td>
</tr>
</tbody>
</table>
Antioxidative Vitamine zur Prävention kardiovaskularer Erkrankungen nach Nierentransplantation und bei chronischer Niereninsuffizienz

Fortsetzung: Roob 2000

Ergebnisse

Die AUC (0 bis 180 min) der Quotienten von MDA zu Cholesterin unter Vitamin E-Supplementation waren signifikant niedriger als die AUC (0 bis 180 min) ohne Vitamin E-Supplementation (Differenz von 10,3 (µmol MDA/mmol Cholesterin) x min, p = 0,004).

Die AUC (0 bis 180 min) der Quotienten von Gesamtperoxid zu Cholesterin unter Vitamin E-Supplementation waren signifikant niedriger als die AUC (0 bis 180 min) ohne Vitamin E-Supplementation (Differenz von 3,18 (mmol Peroxidäquivalente/mmol Cholesterin) x min, p = 0,002).

Schlussfolgerung der Autoren

Eine einzelne Gabe von Vitamin E kann die Lipidperoxidation bei Hämodialysepatienten, die mit Eiseninfusionen behandelt werden, senken.

Kommentar

AUC = Area Under the Curve. EPO = Erythropoetin. MDA = Malondialdehyd. TSAT = Transferrinsättigung.

Quelle Tarng 2004

Fragestellung

Hat Vitamin C einen protektiven Effekt auf das 8-OHdG-Level in peripheren Lymphozyten bei chronischen Hämodialysepatienten?

Ort der Rekrutierung und Setting

Taiwan

Zeitraum der Rekrutierung

Keine Angabe

Studiengruppen

Randomisierte, placebokontrollierte Studie

Evidenzniveau

1

Ein-/ Ausschlusskriterien

Einschlusskriterien: keine Angabe

Ausschlusskriterien: Alter unter 20 Jahren, Dialysalter unter drei Monaten, Raucher, Patienten, die an Diabetes mellitus, Krebs oder an chronischen oder akuten Infektionen leiden, Einnahme von Vitamin E oder C, Patienten, die eine Eisensupplementation, ACE-Hemmer oder entzündungshemmende Medikamente bis drei Monate vor Beginn der Studie eingenommen haben.

Anzahl Zentren

2

Anzahl Gruppen

2

Intervention

Verum 1

Intravenöse Vitamin C Gabe (300 mg) drei Mal pro Woche nach der Hämodialyse

Intervention Kontrolle

Placebo: Kochsalzlösung, ebenfalls intravenös

Zuweisung der Intervention

Randomisierte, verdeckte Zuweisung der Patienten

Art der Randomisierung

Computergenerierte Auslosung der Patienten, blockrandomisiert

Verblindung

Patienten

Follow-Up

Acht Wochen

Primäre Zielgrößen

Keine Fallzahlberechnung angegeben

Sekundäre Zielgrößen

8-OHdG-Level, intrazelluläre Produktion von reaktiven Sauerstoffspezies und Genexpression von hOGG1 und hMTH1 in peripheren Lymphozyten

Statistische Analyse

p-Werte, die geringer als 0,05 waren wurden als signifikant festgelegt. Die Ergebnisse sind mit dem Mittelwert und den Standardabweichungen dargestellt. Die Werte für das Eisen im Serum waren nicht normalverteilt und sind als Mittelwerte mit Spannweiten dargestellt.

Anzahl eligibler Patienten

Keine Angabe
Antioxidative Vitamine zur Prävention kardiovaskulärer Erkrankungen nach Nierentransplantation und bei chronischer Niereninsuffizienz

Fortsetzung: Tarng 2004

<table>
<thead>
<tr>
<th>Quelle</th>
<th>Tarng 2004</th>
</tr>
</thead>
</table>
| Anzahl eingeschlossener Patienten pro Gruppe | Vitamin C = 30
Placebo = 30 |
| Anzahl Patienten mit ausgewerteten Ergebnissen | Vitamin C = 25
Placebo = 26 |
| Dropouts | Neun (fünf der Behandlungs- und vier in der Placebogruppe) Die Gründe dafür waren Schlaganfall (1), Thrombose (3), Wechsel der Dialyseart (1) und Transplantation (1). |
| Patientencharakteristika | Die Studienteilnehmer (31 Männer und 20 Frauen) hatten ein durchschnittliches Alter von 59 ± 13 Jahre und ein Dialysealter von durchschnittlich 46 ± 37 Monate. Im Durchschnitt nahmen sie 92 U/kg/Woche Erythropoetin ein. Die Diagnosen für die Patienten mit ausgewerteten Ergebnissen waren wie folgt: Glomerulonephritis (20), interstitielle Nephritis (10), Nephrosklerose (9) und unklassifizierte Nephropathie (6). Die Gruppen wurden unterteilt nach der Konzentration an Serumferritin < 500 µg/l oder ≥ 500 µg/l und nach der Transferrinsättigung (Quotient aus Eisen- und Transferrinkonzentration) < 50 % oder ≥ 50 %. Von allen Patienten wurden die tägliche Einnahme an Vitamin C, die Konzentrationen an Hämoglobin und C-reaktivem Protein erhoben. |
| Vergleichbarkeit | Keine signifikanten Unterschiede für die erhobenen Patientencharakteristika zwischen den Behandlungsgruppen (Tabelle 1, S. 824). |
| Ergebnisse | Die Konzentration an 8-OHdG nahm in der Gruppe mit Vitamin C-Supplementation nach acht Wochen signifikant ab (22,9 zu 18,8/10⁶ dG, p < 0,01. Auch nach einer Analyse in Subgruppen (1. Patienten mit Ferritinwerten < 500 µg/l und Patienten mit Ferritinwerten ≥ 500 µg/l, 2. Patienten mit einer Transferrinsättigung < 50 % und Patienten mit einer Transferrinsättigung ≥ 50 %) ergaben sich signifikante Unterschiede (p < 0,05). Für die Placebogruppe ergaben sich keine signifikanten Unterschiede. Die univariate Analyse ergab eine Korrelation zwischen dem Anstieg des Plasma Ascorbats und der Reduzierung der 8-OHdG Konzentration (r = -0,649, p < 0,005). Die intrazelluläre Produktion von reaktiven Sauerstoffspezies war nach acht Wochen in der Vitamin C-Gruppe signifikant reduziert (35 ± 33 % vs. 7 ± 15 %, p < 0,05). Für die Placebogruppe ergaben sich keine signifikanten Unterschiede. Das Level von mRNA-hOGG1 nach einer 24-stündigen Vitamin C-Gabe erwies sich als verstärkt exprimiert (p < 0,05), das von hMTH1 jedoch nicht. Es wurden keine statistisch belegten Vergleiche zwischen den Behandlungsgruppen durchgeführt. |
| Schlussfolgerung der Autoren | Vitamin C-Supplementation bei Hämodialysepatienten kann das 8-OHdG-Level in peripheren Lymphozyten und die intrazelluläre Produktion von reaktiven Sauerstoffspezies senken und die Genexpression von hOGG1 zur Basenreparatur erhöhen. Es ergab sich kein Hinweis auf einen in-vivo pro-oxidativen Effekt von Vitamin C auf die Oxidation lymphozytischer DNA-Basen, auch nicht im Fall erhöhter Eisenwerte. |
| Kommentar | Nur Prä-Post-Vergleiche innerhalb der Gruppen. Keine Intragruppvergleiche. 8-OHdG = 8-hydroxy-2’-deoxyguanosine. hOGG1 = 8-oxoguanine-DNA-Glykosylase. ACE = Angiotensin Converting Enzym. DNA = Deoxyribonucleic Acid. hMTH1 = human MutT homologe. mRNA = Messenger Ribonucleic Acid. |
Antioxidative Vitamine zur Prävention kardiovaskulärer Erkrankungen nach Nierentransplantation und bei chronischer Niereninsuffizienz

<table>
<thead>
<tr>
<th>Quelle</th>
<th>Williams 2001</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fragestellung</td>
<td>Verbessert eine Vitamin C-Supplementation die endotheliale Dysfunktion bei Patienten mit erfolgreicher Nierentransplantation?</td>
</tr>
<tr>
<td>Ort der Rekrutierung und Setting</td>
<td>Neuseeland</td>
</tr>
<tr>
<td>Zeitraum der Rekrutierung</td>
<td>Keine Angabe</td>
</tr>
<tr>
<td>Studientyp</td>
<td>Randomisierte, Placebokontrollierte Studie, „Cross-Over“-Design</td>
</tr>
<tr>
<td>Evidenzniveau</td>
<td>IIa, Herabstufung wegen fehlenden Angaben zur Art der Randomisierung und zum Concealment</td>
</tr>
<tr>
<td>Anzahl Zentren</td>
<td>Keine Angabe</td>
</tr>
<tr>
<td>Anzahl Gruppen</td>
<td>2</td>
</tr>
<tr>
<td>Intervention Verum 1</td>
<td>Einzelle orale Vitamin C-Gabe (2 g)</td>
</tr>
<tr>
<td>Intervention Kontrolle</td>
<td>Placebo</td>
</tr>
<tr>
<td>Zuweisung der Intervention</td>
<td>Keine Angabe zum Concealment</td>
</tr>
<tr>
<td>Art der Randomisierung</td>
<td>Keine Angabe</td>
</tr>
<tr>
<td>Verblindung</td>
<td>Doppelt</td>
</tr>
<tr>
<td>Follow-Up</td>
<td>Zwei Stunden</td>
</tr>
<tr>
<td>Primäre Zielgrößen</td>
<td>Endothelabhängige "flow mediated dilation" und nitroglycerininduzierte, endothelunabhängigen Vasodilatation in der Brachialarterie gemessen jeweils zwei Stunden vor der Vitamingabe und zwei Stunden danach mit Ultraschall.</td>
</tr>
<tr>
<td>Sekundäre Zielgrößen</td>
<td>Gesamtcholesterin-Konzentration, „lag time“ der Lipoproteinoxidation im Serum, LDL-Konzentration, HDL-Konzentration, Herzfrequenz, Gefäßgröße, Blutfluss zu Beginn und nach induzierter Ischämie</td>
</tr>
<tr>
<td>Anzahl eligibler Patienten</td>
<td>Keine Angabe</td>
</tr>
<tr>
<td>Anzahl eingeschlossener Patienten pro Gruppe</td>
<td>13</td>
</tr>
<tr>
<td>Anzahl Patienten mit ausgewerteten Ergebnissen</td>
<td>13</td>
</tr>
<tr>
<td>Dropouts</td>
<td>Keine</td>
</tr>
</tbody>
</table>
Antioxidative Vitamine zur Prävention kardiovaskulärer Erkrankungen nach Nierentransplantation und bei chronischer Niereninsuffizienz

Fortsetzung: Williams 2001

<table>
<thead>
<tr>
<th>Quelle</th>
<th>Williams 2001</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vergleichbarkeit</td>
<td>Der Blutdruck wurde als vergleichbar zwischen den Behandlungsgruppen beschrieben, ebenfalls waren die Konzentrationen an Lipoproteinen und Triglyzeriden zu Beginn der Studie bei den Teilnehmern vergleichbar. Die Herzfrequenz, die Gefäßgröße und der Blutfluss unterschieden sich statistisch nicht-signifikant zwischen den vier Gruppen (Placebo vs. Vitamin C, vor und nach der induzierten Ischämie). Klinisch jedoch zum Teil deutliche Unterschiede</td>
</tr>
<tr>
<td>Ergebnisse</td>
<td>Unter der Vitamin C-Gabe war ein signifikanter Anstieg der endothelabhängigen Vasodilatation im Vergleich zum Placebo zu verzeichnen (1,6 ± 2,6 vs. 4,5 ± 2,5 % und 1,9 ± 1,5 vs. 1,8 ± 2,5 %, p = 0,003). Unter Einbezug der Werte Gefäßgröße, Blutfluss vor und nach der induzierten Ischämie zu Beginn der Studie, blieb die Signifikanz erhalten. Die nitroglycerininduzierte endothelunabhängigen Vasodilatation war nicht-signifikant unterschiedlich unter Placebo und unter Vitamin C-Gabe (10,5 ± 4,8 vs. 11,4 ± 6,6 % und 9,9 ± 5,9 vs. 12,2 ± 5,2 %, p = 0,46). Der Anstieg der Vitamin C-Konzentration im Plasma war signifikant mit der „lag-time“ der Lipoproteinoxidation im Serum korreliert (r = 0,60, p = 0,03)</td>
</tr>
<tr>
<td>Schlussfolgerung der Autoren</td>
<td>Vitamin C kann die endothelabhängige „flow mediated dilation“ Vasodilatation wesentlich verbessern und die Resistenz der Lipoproteine gegenüber einer Oxidation in Nierentransplantierten Patienten verbessern.</td>
</tr>
<tr>
<td>Kommentar</td>
<td>Patienten erhielten eine Vielzahl von Medikamenten, die Einfluss auf den Effekt haben, aber bei der statistischen Analyse aufgrund der geringen Fallzahl nicht berücksichtigt werden konnten</td>
</tr>
</tbody>
</table>

ACE = Angiotensin Converting Enzym. BMI = Body Mass Index. HDL = High Density Lipoprotein. LDL = Low Density Lipoprotein.
5.7.2 Studien zur Supplementation durch Vitamin E-beschichtete Dialysemembranen

<table>
<thead>
<tr>
<th>Quelle</th>
<th>Bufano 2004</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fragestellung</td>
<td>Beeinflusst eine Dialyse mit CLE die Plasmakonzentrationen an oxLDL-Ab, gegen den vWF und gegen TM?</td>
</tr>
<tr>
<td>Funktion des Biomarkers</td>
<td>Der vWF und TM sind prothrombotische und antithrombotische Faktoren, die als Marker für eine Endothelschädigung fungieren</td>
</tr>
<tr>
<td>Ort der Rekrutierung und Setting</td>
<td>Italien</td>
</tr>
<tr>
<td>Zeitraum der Rekrutierung</td>
<td>Keine Angabe</td>
</tr>
<tr>
<td>Studientyp</td>
<td>Randomisierte Studie, mit „Cross-Over“ für Teilpopulation</td>
</tr>
<tr>
<td>Evidenzniveau</td>
<td>Ila-Abwertung, da keine Angaben zur Art der Randomisierung und zum Concealment</td>
</tr>
<tr>
<td>Ein-/ Ausschlusskriterien</td>
<td>Einschlusskriterien: Dialysealter von mindestens zwölf und höchstens 45 Monaten, Dialyse mit CLS von mindestens drei Monaten Ausschlusskriterien: Dialysealter > 45 Monate, infektiöse oder akute Infektionserkrankungen, Lambert-Eaton-Syndrom, Vaskulitis, periphere arterielle Ischämie, Angina, Myokardinfarkt, transitorische ischämische Attacke oder Schlaganfall, schwerer unkontrollierbarer Bluthochdruck, fortgeschrittene atherosklerotische Läsionen</td>
</tr>
<tr>
<td>Anzahl Gruppen</td>
<td>2</td>
</tr>
<tr>
<td>Intervention Verum 1</td>
<td>Wechsel der Dialysemembran von einer CLS (Cuprammonium Rayon) zu einer CLE für einen Zeitraum von sechs Monaten, acht randomisiert ausgewählte Studienteilnehmer wieder zurück zu Cuprammonium Rayon Membran für sechs weitere Monate</td>
</tr>
<tr>
<td>Intervention Kontrollen</td>
<td>Dialyse nur mit CLS (Cuprammonium Rayon)</td>
</tr>
<tr>
<td>Zuweisung der Intervention</td>
<td>Randomisiert, keine Angabe zum Concealment</td>
</tr>
<tr>
<td>Art der Randomisierung</td>
<td>Gematcht nach Alter, Geschlecht, Komorbidität, ursächlicher Grunderkrankung, Rauchstatus und Dialysealter</td>
</tr>
<tr>
<td>Verblindung</td>
<td>Keine Angabe</td>
</tr>
<tr>
<td>Follow-Up</td>
<td>Sechs Monate + sechs Monate für Teilpopulation</td>
</tr>
<tr>
<td>Primäre Zielgrößen</td>
<td>Konzentrationen im Plasma von oxLDL-Ab, vWF und von TM, Vitamin E-Konzentration</td>
</tr>
<tr>
<td>Anzahl eligibler Patienten</td>
<td>Keine Angabe</td>
</tr>
<tr>
<td>Anzahl eingeschlossener Patienten pro Gruppe</td>
<td>kVM = 16 CLE = 16</td>
</tr>
<tr>
<td>Anzahl Patienten mit ausgewerteten Ergebnissen</td>
<td>32</td>
</tr>
<tr>
<td>Dropouts</td>
<td>Keine Angabe</td>
</tr>
</tbody>
</table>

Patientencharakteristika

Das Durchschnittsalter der Hämodialysepatienten betrug 58,3 ± 7,0 Jahre, das Dialysealter 30,1 ± 10,0 Monate. Die Diagnosen waren wie folgt: Glomerulonephritis (10), interstitielle Nephritis (10), polyzystische Nierenerkrankung (8) chronische Pyelonephritis (8), unspezifische Nephropathie (2) und unklare Diagnose (4). Von allen Patienten wurden die Konzentrationen an Cholesterin, LDL-c, HDL-c, Vitamin E, ox-LDL-Ab, TM und des vWF erhoben.
Antioxidative Vitamine zur Prävention kardiovaskulärer Erkrankungen nach Nierentransplantation und bei chronischer Niereninsuffizienz

Fortsetzung: Bufano 2004

<table>
<thead>
<tr>
<th>Quelle</th>
<th>Bufano 2004</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vergleichbarkeit</td>
<td>Die Vergleichbarkeit der Ergebnisse der gemessenen Parameter wurde nicht durch statistische Analyse bewiesen, die Werte sind aber nahezu identisch.</td>
</tr>
<tr>
<td>Ergebnisse</td>
<td>In der Gruppe, die mit CLE dialysiert wurde, sanken die Konzentrationen des vWF (101,1 ± 7,5 % zu 76,7 ± 18,5 %; p = 0,001) und der Autoantikörper gegen oxLDL-Ab (von 472 ± 287 zu 264 ± 199 mU/ml; p = 0,0001). Die Konzentrationen des TM sanken nicht. Die Vitamin E-Konzentrationen stiegen an (von 4,40 ± 0,81 zu 7,81 ± 1,16 µg/mg Cholesterin). Die acht Studienteilnehmer, die nach sechs Monaten Dialyse mit Zellulose- wieder auf Vitamin E-beschichtete Membran umgestellt wurden, zeigten nach weiteren sechs Monaten eine Zunahme der Konzentrationen des vWF (74,3 ± 15,6 % zu 96,5 ± 16,3 %; p = 0,001) und der oxLDL-Ab (von 261 ± 128 zu 585 ± 183 mU/ml; p = 0,0001). Die multiple Regression zwischen vWF und oxLDL-Ab und den absoluten Vitamin E-Konzentrationen zeigte, dass Änderungen in vWF- und oxLDL-Ab-Konzentrationen signifikant von der Ansteigerung der alpha-tocopherol-Konzentration beeinflusst werden (r² = 0,680 p < 0,001 zu oxLDL-Ab und r² = 0,42 p < 0,01 zu vWF). Die Konzentrationen von vWF und TM waren positiv mit dem Dialysetermin korreliert: r² = 0,54, p < 0,005 und r² = 0,66, p < 0,0001. Nach der Umstellung der CLE auf die CLS bei acht Patienten stiegen die Konzentrationen an oxLDL-Ab und vWF wieder an: 261 ± 128 zu 585 ± 183 mU/ml und 74,3 ± 15,6 % zu 96,5 ± 16,3 % (jeweils gemessen nach zwei und sechs Monaten) In der Gruppe, die mit CLS dialysiert wurde, wurden keine Änderungen der relevanten Konzentrationen festgestellt.</td>
</tr>
<tr>
<td>Schlussfolgerung der Autoren</td>
<td>Die CLE kann einige Anzeichen an Schäden der LDL und des Endothels reduzieren.</td>
</tr>
<tr>
<td>Kommentar</td>
<td>Es bleibt unklar, ob der Mann-Whitney-Test zum Gruppenvergleich oder zum Vergleich der verschiedenen Messzeitpunkte innerhalb einer Gruppe verwendet wurde, was unzulässig wäre.</td>
</tr>
</tbody>
</table>

CLE = Vitamin E-beschichtete Membran. CLS = Zellulosemembran. HDL-c = High Density Lipoprotein-Cholesterol. KVM = Konventionelle Vergleichsmembran. LDL-c = Low Density Lipoprotein-Cholesterol. oxLDL-AB = Autoantikörper gegen oxidiertes LDL. TM = Thrombomodulin. vWF = von Willebrand Faktor

<table>
<thead>
<tr>
<th>Quelle</th>
<th>Calo 2004</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ort der Rekrutierung und Setting</td>
<td>Studie 2: Abteilung für Nephrologie der Klinik in Bozen, Italien</td>
</tr>
<tr>
<td>Zeitraum der Rekrutierung</td>
<td>Keine Angabe</td>
</tr>
<tr>
<td>Studienteilnehmer</td>
<td>Nicht-randomisierte Interventionsstudie mit Kontrollgruppe</td>
</tr>
<tr>
<td>Evidenzniveau</td>
<td>IIa</td>
</tr>
<tr>
<td>Ein-/ Ausschlusskriterien</td>
<td>Einschlusskriterien: mindestens ein Jahr Hämodialyse mit herkömmlichen Dialysatoren ohne Vitamin E-beschichtete Membranen Ausschlusskriterien: Nachweis von Entzündungsmarkern (CRP, alpha2-Globuline, Monozytenzahl, Leukozatenzahl) und klinische entzündungsbedingte Symptome</td>
</tr>
<tr>
<td>Anzahl Zentren</td>
<td>1</td>
</tr>
<tr>
<td>Anzahl Gruppen</td>
<td>Studie 2: 2</td>
</tr>
<tr>
<td>Intervention Verum 1</td>
<td>Studie 2: zwölf Monate Dialyse mit Vitamin E-beschichteten Membranen (Exebrane CLE) dreimal wöchentlich</td>
</tr>
<tr>
<td>Intervention Kontrolle</td>
<td>Studie 2: Beibehaltung der Dialysatoren ohne Vitamin E-beschichtete Membrane (Cuprammonium Membran)</td>
</tr>
<tr>
<td>Follow-Up</td>
<td>Studie 2: ein Jahr</td>
</tr>
<tr>
<td>Primäre Zielgrößen</td>
<td>Keine Fallzahlberechnung</td>
</tr>
<tr>
<td>Sekundäre Zielgrößen</td>
<td>Studie 2: Spot Plasma-Level von HPO, AOP</td>
</tr>
<tr>
<td>Statistische Analyse</td>
<td>Zur Analyse verbundene und unverbundene Daten wurde der Students-t Test herangezogen. Werte unter oder gleich 5 % wurden als signifikant gewertet. Die Daten wurden mit Mittelwerten und Standardabweichung angegeben.</td>
</tr>
</tbody>
</table>
Antioxidative Vitamine zur Prävention kardiovaskulärer Erkrankungen nach Nierentransplantation und bei chronischer Niereninsuffizienz

Fortsetzung: Calo 2004

<table>
<thead>
<tr>
<th>Quelle</th>
<th>Calo 2004</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anzahl eligibler Patienten</td>
<td>Keine Angabe</td>
</tr>
<tr>
<td>Anzahl eingeschlossener Patienten pro Gruppe</td>
<td>Studie 2: Verum: 8 Kontrollen: 8</td>
</tr>
<tr>
<td>Anzahl Patienten mit ausgewerteten Ergebnissen</td>
<td>Studie 2: 16</td>
</tr>
<tr>
<td>Dropouts</td>
<td>Keine</td>
</tr>
<tr>
<td>Patienten-</td>
<td>Studie 2:</td>
</tr>
<tr>
<td>charakteristika</td>
<td>Gruppe mit Dialysatoren mit Vitamin E-beschichtete Membrane: fünf Männer, drei Frauen; Alter von 48 bis 65 Jahren; Dialysezeit pro Woche zwischen 210 und 240 Minuten</td>
</tr>
<tr>
<td></td>
<td>Gruppe mit Dialysatoren ohne Vitamin E-beschichtete Membrane: fünf Männer, drei Frauen; Alter von 50 bis 67 Jahren; Dialysezeit pro Woche zwischen 210 und 240 Minuten</td>
</tr>
<tr>
<td></td>
<td>Alle Teilnehmer: Blutdruck von 135 / 85 zu 150 / 90 mmHg; Therapien mit Kalziumkanalblockern, ACE-Hemmern, Alphablockern und Epoetin</td>
</tr>
<tr>
<td>Vergleichbarkeit</td>
<td>Abgesehen von Alter und Geschlecht werden keine Angaben gemacht über die HPO-Spiegel zu Beginn der Studie</td>
</tr>
<tr>
<td>Ergebnisse</td>
<td>Nach einem Jahr waren die Plasmakonzentrationen von Hydroperoxiden der Patienten die die Hämodialyse mit Vitamin E-beschichteter Membran durchführten im Vergleich mit den Konzentrationen der Patienten, die die Hämodialyse mit der Cuprammonium Membran durchführten reduziert (2,25 ± 0,12 zu 1,42 ± 0,13 µM, p < 0,001).</td>
</tr>
<tr>
<td>Schlussfolgerung der Autoren</td>
<td>Es konnte eine Reduzierung der vom oxidativen Stress beeinflussten Genexpression von Proteinen und anderen relevanten Markern beobachtet werden, die die These unterstützt, dass der Einsatz von Vitamin E-beschichteten Membranen bei der Dialyse eine Prävention oder eine Verringerung des Fortschreitens kardiovaskulärer Erkrankungen oder von Atherosklerose bewirken kann.</td>
</tr>
<tr>
<td>Kommentar</td>
<td>Es werden keine Angaben zur Vergleichbarkeit der HPO-Spiegel zwischen den Gruppen zu Beginn der Studie gemacht, ebenso wenig wie über gegebenenfalls unterschiedliche Begleitmedikation. Es kann dementsprechend nicht ausgeschlossen werden, dass der gemessene Effekt auf andere Einflussvariablen zurückzuführen ist.</td>
</tr>
</tbody>
</table>

ACE = Angiotensine Converting Enzyme. AOP = Totale antioxidative Kapazität. CRP = C-reactives Protein. d. u. = Densitometric Units. HO-1 = Hämoxigenase-1. HPO = Hydroperoxide.

<table>
<thead>
<tr>
<th>Quelle</th>
<th>Clermont 2001</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fragestellung</td>
<td>Reduziert die Verwendung von Dialysatoren mit CLE oxidativen Stress bei Hämodialysepatienten?</td>
</tr>
<tr>
<td>Ort der Rekrutierung und Setting</td>
<td>Frankreich</td>
</tr>
<tr>
<td>Zeitraum der Rekrutierung</td>
<td>Keine Angabe</td>
</tr>
<tr>
<td>Studientyp</td>
<td>Randomisierte kontrollierte Studie; „Cross-Over“-Design</td>
</tr>
<tr>
<td>Evidenzniveau</td>
<td>Ila siehe Bufano</td>
</tr>
<tr>
<td>Ein-/ Ausschlusskriterien</td>
<td>Einschlusskriterien: stabile klinische Verfassung, keine fortschreitende zugrundeliegende Erkrankung, keine klinischen Vorkommnisse in den drei Monaten vor der Studie (Überwässerung, ischämische oder infektiöse Komplikationen), normale Werte für C-reactives Protein im Plasma und einen urea Kt/V index > 1. Ausschlusskriterien: Patienten, die mit Vitamin C, E, i. v. Eisen- oder ACE-Hemmer behandelt wurden, Raucher</td>
</tr>
<tr>
<td>Anzahl Gruppen</td>
<td>2</td>
</tr>
<tr>
<td>Intervention Gruppe 1</td>
<td>Ein Monat Dialyse unter Verwendung einer AN ohne gebundenes Vitamin E (AN 69 XT) danach ein Monat Dialyse unter Verwendung der CLE (EXCEBRAN E15)</td>
</tr>
<tr>
<td>Intervention Gruppe 2</td>
<td>Ein Monat Dialyse unter Verwendung der CLE danach ein Monat Dialyse unter Verwendung einer AN ohne gebundenes Vitamin E</td>
</tr>
</tbody>
</table>
Antioxidative Vitamine zur Prävention kardiovaskulärer Erkrankungen nach Nierentransplantation und bei chronischer Niereninsuffizienz

Fortsetzung: Clermont 2001

<table>
<thead>
<tr>
<th>Quelle</th>
<th>Clermont 2001</th>
</tr>
</thead>
<tbody>
<tr>
<td>Follow-Up</td>
<td>Zwei Monate</td>
</tr>
<tr>
<td>Primäre Zielgrößen</td>
<td>Keine Fallzahlberechnung</td>
</tr>
<tr>
<td>Sekundäre Zielgrößen</td>
<td>Vitamin C-Konzentration im Plasma, Elastaseaktivität im Plasma, AFR / Vitamin C-Verhältnis</td>
</tr>
<tr>
<td>Statistische Analyse</td>
<td>Alle Daten wurden mit dem Mittelwert und der Standardabweichung dargestellt. Bei einem p-Wert unter 0,05 wurde das Ergebnis als signifikant gewertet. Die Daten wurden mittels ANOVA für wiederholte Messungen ausgewertet, als Posttest zum paarweisen Vergleich der Mittelwerte auf signifikante Unterschiede wurde der lineare Kontrasttest verwendet. Eine lineare Regression wurde für das AFR / Vitamin C-Verhältnis und für die Elastaseaktivität durchgeführt; die Pearson’s Korrelation wurde gegen Null getestet.</td>
</tr>
<tr>
<td>Anzahl eligibler Patienten</td>
<td>Keine Angabe</td>
</tr>
</tbody>
</table>
| Anzahl eingeschlossener Patienten pro Gruppe | Gruppe 1: n = 10
Gruppe 2: n = 6 |
| Anzahl Patienten mit ausgewerteten Ergebnissen | 16 |
| Dropouts | Keine |
| Ergebnisse | Die Parameter für oxidativen Stress wurden vor Beginn der letzten Dialyse (preHD) mit CLE oder AN ohne Vitamin E gemessen und nach der letzten Dialyse der einmonatigen Behandlung mit der jeweiligen Membran (postHD). Die Dialyse mit CLE im Vergleich zur Dialyse mit AN ergab nach einem Monat Dialyse eine signifikante Erhöhung der preHD Vitamin C-Konzentrationen (AN: ca. 15 µM vs CLE: ca. 18 µM p < 0,05, aus Grafik abgelesen figure 1). Das preHD AFR / Vitamin C-Verhältnis und die preHD Plasma Elastaseaktivität änderte sich nicht-signifikant (Werte nur in Grafik abgebildet). Die Konzentrationen an Vitamin E im Plasma unterlagen keiner Veränderung nach einer Dialysetisung und unterschieden sich nicht zwischen den Gruppen (AN: 6,69 ± 0,42 µmol/mmol preHD zu 6,33 ± 0,35 µmol/mmol postHD und CLE: 6,69 ± 0,41 µmol/mmol preHD zu 6,36 ± 0,25 µmol/mmol postHD). PostHD AFR / Vitamin C-Verhältnis und die Elastaseaktivität waren korreliert (r = 0,57, p < 0,01, die preHD-Werte dafür jedoch nicht (r = 0,34, nicht-signifikant). |
| Schlussfolgerung der Autoren | Dem oxidativen Stress, der während der Dialyse auftritt, kann teilweise durch die Verwendung einer CLE vorgebeugt werden. Die Daten lassen den Schluss zu, dass eine Dialyse mit einer Vitamin E-beschichteten Membran spezifische Fängereigenschaften für freie Radikale besitzt und eine Reduzierung der Aktivierung von neutrophilen Granulozyten bewirkt. |
| Kommentar | Das „Cross-Over“-Design wurde bei der Darstellung der Ergebnisse nicht berücksichtigt. Es wurde nicht berichtet, ob sich die Ergebnisse zwischen der Gruppe, die zuerst mit einer CLE bzw. der, die als zweites mit einer CLE dialysiert wurde, unterschieden. |

Antioxidative Vitamine zur Prävention kardiovaskulärer Erkrankungen nach Nierentransplantation und bei chronischer Niereninsuffizienz

<table>
<thead>
<tr>
<th>Quelle</th>
<th>Eiselt 2001</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fragestellung</td>
<td>Einfluss einer Vitamin E-gebundenen Dialysemembran in Kombination mit einer Vitamin C-Infusion auf den oxidativen Stress bei Hämodialysepatienten.</td>
</tr>
<tr>
<td>Ort der Rekrutierung und Setting</td>
<td>Tschechien</td>
</tr>
<tr>
<td>Zeitraum der Rekrutierung</td>
<td>Keine Angaben</td>
</tr>
<tr>
<td>Studientyp</td>
<td>Zwei Studien Randomisierte kontrollierte Studie mit zweimaligem „Cross-Over“</td>
</tr>
<tr>
<td>Evidenzniveau</td>
<td>IIa, Herabstufung wegen fehlender Angaben zum Concealment</td>
</tr>
<tr>
<td>Ein-/ Ausschlusskriterien</td>
<td>Einschlusskriterien: Patienten mit chronischer Nierenenerkrankung, die sich dreimal pro Woche einer Dialyse unterziehen Ausschlusskriterien: keine Angabe</td>
</tr>
<tr>
<td>Anzahl Zentren</td>
<td>Kurzzeitstudie: 4 Langzeitstudie: 2</td>
</tr>
<tr>
<td>Interventions-Gruppen</td>
<td>Kurzzeitstudie: Gruppe 3 wurde mit CLE dialysiert Gruppe 4 wurde mit CLE dialysiert und bekam zusätzlich eine Vitamin C-Infusion (entsprechend 504 mg/Dialyse)</td>
</tr>
<tr>
<td>Kontrollen</td>
<td>Gruppe 1 wurde mit einer nicht-modifizierten CLS dialysiert Gruppe 2 wurde mit einer nicht-modifizierten CLS dialysiert und bekam zusätzlich eine Vitamin C-Infusion (entsprechend 504 mg/Dialyse)</td>
</tr>
<tr>
<td>Interventions-Gruppen</td>
<td>Langzeitstudie: Gruppe 2: wurde für vier Wochen mit einer nicht-modifizierten CLS dialysiert, dann folgten vier Wochen Dialyse mit CLE, dann wieder vier Wochen mit einer nicht-modifizierten CLS und erhielt aber zusätzlich noch eine Vitamin C-Infusion (entsprechend 504 mg/Dialyse)</td>
</tr>
<tr>
<td>Kontrolle</td>
<td>Gruppe 1 wurde für vier Wochen mit einer nicht-modifizierten CLS dialysiert, dann folgten vier Wochen Dialyse mit CLE, dann wieder vier Wochen mit einer nicht-modifizierten CLS</td>
</tr>
<tr>
<td>Zuweisung der Intervention</td>
<td>Unklar, ob verdeckt</td>
</tr>
<tr>
<td>Art der Randomisierung</td>
<td>Nummern ziehen</td>
</tr>
<tr>
<td>Verblindung</td>
<td>Keine Angabe</td>
</tr>
<tr>
<td>Follow-Up</td>
<td>Kurzzeitstudie: vier Stunden (eine Dialysebehandlung) Langzeitstudie: zwölf Wochen</td>
</tr>
<tr>
<td>Primäre Zielgrößen</td>
<td>Keine Fallzahlberechnung</td>
</tr>
<tr>
<td>Sekundäre Zielgrößen</td>
<td>Vitamin C-Konzentration, TBARS, AOC, Konzentrationen von Glutathion, Superoxid Dismutase und Glutathion Peroxidase</td>
</tr>
<tr>
<td>Statistische Analyse</td>
<td>Abhängig von der Normalverteilung der Daten wurden die Ergebnisse entweder mit dem t-Test (TBARS, AOC) ANOVA (Vitamin C) oder dem Wilcoxon-Vorzeichentest (Glutathion, Superoxid Dismutase und Glutathion Peroxidase) getestet. Werte von p < 0,05 wurden als signifikant gewertet. Die Daten wurden mit dem Mittelwert mit Standardabweichung oder dem Median mit Spannweiten angegeben, wenn die Werte sehr unsymmetrisch verteilten</td>
</tr>
<tr>
<td>Anzahl eligibler Patienten</td>
<td>Keine Angabe</td>
</tr>
<tr>
<td>Anzahl Patienten mit ausgewerteten Ergebnissen</td>
<td>Kurzzeitstudie: 24 Langzeitstudie: 20</td>
</tr>
<tr>
<td>Dropouts</td>
<td>Keine</td>
</tr>
</tbody>
</table>
Antioxidative Vitamine zur Prävention kardiovaskulärer Erkrankungen nach Nierentransplantation und bei chronischer Niereninsuffizienz

Fortsetzung: Eiselt 2001

<table>
<thead>
<tr>
<th>Quelle</th>
<th>Eiselt 2001</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vergleichbarkeit</td>
<td>Die Baseline-TBARS-Level und die Vitamin C-Konzentration der Gruppen unterschieden sich nicht-signifikant voneinander.</td>
</tr>
<tr>
<td>Ergebnisse</td>
<td>Kurzzeitstudie: Ein signifikanter Anstieg der TBARS-Konzentration während der Dialyse konnte nur bei der nicht-modifizierten Membran ohne Vitamin C-Infusion beobachtet werden (3,95 zu 4,26 µmol/l; p < 0,02). Alle anderen Interventionen führten zu keiner signifikanten Änderung in der TBARS-Konzentration. Unter Verwendung der Vitamin E-beschichteten Membran ergaben sich keine Änderungen der TBARS-Konzentration 3,90 ± 0,15 (preHD) vs. 4,09 ± 0,14 (postHD) ohne Vitamin C und 4,05 ± 0,16 (preHD) vs. 4,06 ± 0,15 (postHD) mit Vitamin C. Für die Konzentrationen von Glutathion, Superoxid Dismutase und Glutathion Peroxidase liegen keine Vergleiche zwischen den Gruppen vor. Die Vitamin C-Konzentration verringerte sich signifikant sowohl nach der Dialyse mit und ohne modifizierte Membran ohne zusätzliche Vitamin C-Infusion (p < 0,01). Die AOC-Konzentrationen verringerten sich in allen Gruppen signifikant nach der Dialyse im Vergleich zu vor der Dialyse (p = 0,001). Langzeitstudie: Die TBARS-Konzentrationen waren nach der Dialyse mit CLE mit oder ohne Vitamin C-Infusion geringer im Vergleich zu den Konzentrationen nach Dialyse mit CLS (p < 0,02 für den Vergleich der Gruppe mit Vitamin C- Supplementation gegenüber Ausgangsdaten und Daten der vierten Woche, p < 0,05 für den Vergleich der Gruppe ohne Vitamin C-Supplementation gegenüber Ausgangsdaten und Daten der vierten Woche). Nach der erneuten Umstellung der Membran von CLE nach CLS stiegen die Werte wieder bis auf die Ausgangskonzentrationen an. Die Konzentrationen von Glutathion, Superoxid Dismutase und Glutathion Peroxidase erfuhren keine Veränderungen. Es liegen keine Vergleiche zwischen den Gruppen vor.</td>
</tr>
<tr>
<td>Schlussfolgerung der Autoren</td>
<td>Die CLE verhinderte einen Anstieg an Lipidperoxidation während einer Dialyse. Unter Langzeitanwendung konnte eine Verringerung der Lipidperoxidation schon an Beginn der Dialyse beobachtet werden. Eine erhöhte AOC durch die Verwendung der CLE und einer Vitamin C-Infusion konnte nicht beobachtet werden. Eine hochdosierte Vitamin C-Infusion unter Verwendung einer CLS verhindert einen Anstieg der Lipidperoxidation, eventuell durch eine erhöhte Rate an endogener Vitamin E-Regeneration verursacht.</td>
</tr>
</tbody>
</table>

AOC = Antioxidant Capacity, antioxidative Kapazität; CLE = Vitamin E-beschichtete Membran; CLS = Zellulosemembran; MDA = Malondialdehyd; preHD = Messung vor Beginn der letzten Dialyse in der Studie; postHD = Messung nach der letzten Dialyse in der Studie; TBARS = Thiobarbituric Acid Reacting Substances.
Quelle

Hara 2004

Fragstellung

Reduziert die Langzeitanwendung einer Vitamin E-beschichteten Membran bei der Dialyse den oxidativen Stress, gemessen an der Serumkonzentration des oxidierten LDL?

Ort der Rekrutierung und Setting

Japan

Zeitraum der Rekrutierung

Keine Angabe

Studentyp

Experimentelle Studie ohne Randomisierung

Evidenzniveau

IIa

Ein-/ Ausschlusskriterien

Keine Angaben

Anzahl Gruppen

Zwei (eigentlich fünf, aber drei Gruppen sind von keiner Intervention betroffen)

Intervention Verum 1

Wechsel der Dialysemembran der bisherigen (Zellulose- und synthetischen Membranen) zu einer Vitamin E-gebundenen

Intervention Kontrollen

Kein Wechsel der Dialysemembran

Follow-Up

Zwölf Monate

Primäre Zielgrößen

Keine Fallzahlberechnung

Sekundäre Zielgrößen

Konzentration des oxLDL im Verhältnis zu LDL im Serum

Statistische Analyse

Zum Vergleich der Daten wurde der Students-t-Test verwendet. Ein p-Wert von < 0,05 wurde als signifikant gewertet. Die Daten wurden mit Mittelwerten und den Standardabweichungen angegeben.

Anzahl eligibler Patienten

Keine Angabe

Anzahl eingeschlossener Patienten pro Gruppe

Intervention: n = 13, aber vor Intervention hatten bereits acht Patienten Vitamin E-Membran
Kontrolle: n = unklar 39-13? = 26

Anzahl Patienten mit ausgewerteten Ergebnissen

Unklar Wechsel zu Vitamin E n = 13, aber vorher bereits acht Vitamin E-Patienten

Dropouts

Keine Angabe

Patientencharakteristika

Das Durchschnittsalter der Hämodialysepatienten, die die Membran nicht wechselten war 66 Jahre. Das Durchschnittsalter der Hämodialysepatienten, die von konventionellen zu Vitamin E-beschichteten Membranen wechselten war 62,2 Jahre, das Dialysealter war durchschnittlich 158,0 ± 85,4 Monate. Die Diagnosen waren wie folgt: chronische Glomerulonephritis (elf), diabetische Nephropathie (ein) und polyzystische Nierenerkrankung (ein).

Vergleichbarkeit

Die Konzentrationen des Serum oxLDL wurden bei Patienten in verschiedenen Stadien einer Nierenerkrankung untersucht, es wird hier aber nur der Vergleich zwischen Hämodialysepatienten bewertet. Ein statistischer Vergleich der Patientenparameter liegt nicht vor. Die Ergebnisse der hämatologischen und biochemischen Untersuchungen änderten sich nicht-signifikant (Werte nicht beschrieben)

Ergebnisse

In der Gruppe der Hämodialysepatienten befanden sich acht Patienten, die mit einer Vitamin E-beschichteten Membran dialysiert wurden. Der Vergleich der Konzentrationen vor einer Dialyse ergab einen signifikanten Unterschied in den oxLDL-Konzentrationen (1,62 ± 0,83 ng/µg LDL für die Vitamin E-beschichtete Membran vs. 3,28 ± 2,06 ng/µg LDL für die konventionellen Membrane). In der Gruppe, die einen Membranwechsel zu einer Vitamin E-beschichteten Membran vollzogen hat, ergaben die Messungen vor und nach der Dialyse zu den Zeitpunkten 0, 1, 3, 6 und 12 Monaten einen zunächst einen leichten signifikanten Anstieg der oxLDL-Konzentrationen (p < 0,001), der aber dann zum Studienendpunkt wieder abnahm. Über den Zeitraum von zwölf Monaten konnte eine signifikante Abnahme der Nettoveränderung an oxLDL-Konzentrationen während einer Dialysesitzung beobachtet werden: von 2,66 ± 1,18 zu Beginn der Studie zu 1,29 ± 0,65 nach einem Monat. Dieser Wert war gleich bleibend bis zum Ende der Studie (p = 0,01). Ein Vergleich zwischen den Behandlungsgruppen fehlt.
Antioxidative Vitamine zur Prävention kardiovaskulärer Erkrankungen nach Nierentransplantation und bei chronischer Niereninsuffizienz

Fortsetzung: Hara 2004

<table>
<thead>
<tr>
<th>Quelle</th>
<th>Hara 2004</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schlussfolgerung der Autoren</td>
<td>Eine Verbesserung des Verfahrens der Dialyse, speziell der Dialysemembran, zur Reduzierung des oxidativen Stresses könnte für die Prävention des Fortschreitens der Arteriosklerose bedeutend sein.</td>
</tr>
<tr>
<td>Kommentar</td>
<td>Es ist unklar, wie viele Patienten mit Vitamin E-beschichteten Membranen ausgewertet wurden, insbesondere ob nur die Patienten, die die Membran gewechselt hatten oder auch die, die bereits vorher eine Vitamin E-beschichteten Membran hatten, eingeschlossen wurden. Auch in der Kontrollgruppe werden keine Angaben zur Anzahl zu den verschiedenen Messzeitpunkten ausgewerteten Patienten gemacht (Grob mangelhafte biometrische Qualität).</td>
</tr>
</tbody>
</table>

LDL = Low Density Lipoprotein. oxLDL = Oxidiertes Low Density Lipoprotein.

Quelle Kobayashi 2003

Fragestellung	Schwächt eine Dialyse mit Vitamin E-beschichteter Membran die Atherosklerose ab, indem sie die rheologischen Eigenschaften der zirkulierenden Erythrozyten verbessert?
Ort der Rekrutierung und Setting	Japan
Zeitraum der Rekrutierung	Keine Angabe
Studientyp	Randomisierte kontrollierte Studie
Evidenzniveau	IIa Abwertung, da Art der Randomisierung und Concealment nicht beschrieben
Ein-/ Ausschlusskriterien	Keine Angaben
Anzahl Gruppen	2
Intervention Verum 1	Dialyse mit Vitamin E-beschichteter Membran
Intervention Kontrollen	Dialyse mit vergleichbarer Membran ohne gebundenes Vitamin E
Zuweisung der Intervention	Zuweisung ohne Randomisierung
Follow-Up	Ein Jahr
Primäre Zielgrößen	Keine Fallzahlberechnung
Sekundäre Zielgrößen	IMT der Karotiden und deren Viskosität, der Anteil an Dysmorphismus (% DMR) roter Blutkörperchen (RBC) und die Standardabweichung der Erythrozytenverteilungsbreite (RDW-SD) (= Maß für die Anisozytose)
Statistische Analyse	Unterschiede zwischen den Ergebnissen der beiden Gruppen wurden mit dem Student t-Test für unverbundene und verbundene Stichproben analysiert. Falls notwendig wurde der Mann-Whitney-U-Test verwendet. p-Werte kleiner als 0,05 wurden als signifikant gewertet. Die Daten wurden mit ihren Mittelwerten und der Standardabweichung dargestellt.
Anzahl eligibler Patienten	Keine Angabe
Anzahl eingeschlossener Patienten pro Gruppe	Verum: 17 Kontrolle: 17
Anzahl Patienten mit ausgewerteten Ergebnissen	34
Dropouts	Keine
Patientencharakteristika	Die Studienteilnehmer (19 Männer und 15 Frauen) hatten ein durchschnittliches Alter von 62 ± 12 Jahren und ein durchschnittliches Dialysealter von $4,4 \pm 1,1$ Jahren. Die Diagnosen der Niereninsuffizienz waren chronische Glomerulonephritis ($n = 26$ und Diabetes ($n = 8$). Von allen Patienten wurden die Werte von Cholesterin, Triglyceriden, vom Blutdruck, BMI, HDL und Kt/V erhoben,
Antioxidative Vitamine zur Prävention kardiovaskulärer Erkrankungen nach Nierentransplantation und bei chronischer Niereninsuffizienz

Fortsetzung: Kobayashi 2003

<table>
<thead>
<tr>
<th>Quelle</th>
<th>Kobayashi 2003</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ergebnisse</td>
<td>Die Verwendung einer Vitamin E-beschichteten Membran bei der Dialyse zeigte nach einem Jahr eine signifikante Verminderung der IMT im Vergleich zum Beginn der Studie (0,93 ± 0,18 vs. 0,88 ± 0,15, p < 0,05 für die rechte IMT (in mm) und 0,97 ± 0,24 vs. 0,87 ± 0,14, p < 0,01 für die linke IMT). Bei der Kontrollgruppe wurde nach einem Jahr eine Zunahme der IMT festgestellt (0,88 ± 0,22 vs 0,99 ± 0,21 rechte IMT, 0,93 ± 0,19 vs. 0,99 ± 0,25 linke IMT). Ein Hypothesentest zwischen den Gruppen wurde nicht berichtet. Keine statistisch signifikante Veränderung der Karotidenplaques in beiden Gruppen. Alle Teilnehmer zeigten erhöhte Werte für die Viskosität der roten Blutkörperchen. Die Dialyse mit Vitamin E-beschichteter Membran zeigte eine Verbesserung der Werte nach einem Jahr (von 4,84 ± 0,41 cP vs. 4,51 ± 0,54 cP, p < 0,01), während sich die Werte für die Viskosität nach der einjährigen Dialyse mit einer Membran ohne gebundenes Vitamin E verschlechterten (von 4,57 ± 0,48 cP vs. 4,90 ± 0,53 cP, p < 0,01). Es wurde kein Hypothesentest zwischen den Gruppen angegeben. Auch die Werte für %DMR sanken in der Interventionsgruppe nach einem Jahr (von 2,29 ± 2,17 % vs. 1,90 ± 1,49 %, p < 0,01), die Werte der Kontrollgruppe zeigten dagegen keine statistisch signifikanten Änderungen (von 1,98 ± 1,44 % zu 1,88 ± 1,46 %). Die Werte für die Erythrozytenverteilungsbreite verbesserten sich ebenfalls nur in der Interventionsgruppe (von 54,4 ± 7,6 fl vs. 49,3 ± 5,9 fl, p < 0,01). Die benötigten Erythropoetidosen sanken in der Interventions- von 5383 ± 2655 auf 4235 ± 3103 U/Woche, p < 0,05, während sie bei der Kontrollgruppe von 5162 ± 2514 auf 6618 ± 2190 U/Woche, p < 0,001 anstiegen.</td>
</tr>
<tr>
<td>Schlussfolgerung der Autoren</td>
<td>Die Ergebnisse lassen darauf schließen, dass die Verwendung einer Vitamin E-beschichteten Membran bei der Dialyse eine Verbesserung der Atherosklerose bewirkt. Ein zugrunde liegender Mechanismus dabei ist, neben einem antioxidativen Effekt, eine Verbesserung der rheologischen Eigenschaften der Erythrozyten.</td>
</tr>
<tr>
<td>Kommentar</td>
<td>Es wurden keine statistischen Tests zum Vergleich zwischen Interventions- und Kontrollgruppe durchgeführt, keine Angabe, inwiefern andere Faktoren wie Diabetesstatus, zusätzliche Vitamingaben in beiden Gruppen gleich verteilt waren. Der klinische Relevanz der gemessenen Unterschiede der IMT.</td>
</tr>
</tbody>
</table>

Antioxidative Vitamine zur Prävention kardiovaskulärer Erkrankungen nach Nierentransplantation und bei chronischer Niereninsuffizienz

<table>
<thead>
<tr>
<th>Quelle</th>
<th>Mune 1999</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zuweisung der Intervention</td>
<td>Keine Beschreibung einer verdeckten Zuweisung</td>
</tr>
<tr>
<td>Art der Randomisierung</td>
<td>Matching nach Alter und Geschlecht</td>
</tr>
<tr>
<td>Verblindung</td>
<td>Nicht beschrieben</td>
</tr>
<tr>
<td>Follow-Up</td>
<td>Zwei Jahre</td>
</tr>
<tr>
<td>Primäre Zielgrößen</td>
<td>Keine Fallzahlberechnung</td>
</tr>
<tr>
<td>Sekundäre Zielgrößen</td>
<td>Konzentration des MDA, des oxidierten LDL, Plasma Lipid und Vitamin E Konzentration und der aortic calcification index (ACI)</td>
</tr>
<tr>
<td>Statistische Analyse</td>
<td>Die Ergebnisse wurden mit dem Student's-t-Test analysiert. Das Level der statistischen Signifikanz wurde auf p < 0,05 festgelegt. Die Ergebnisse wurden mit den Mittelwerten und der Standardabweichung dargestellt.</td>
</tr>
<tr>
<td>Anzahl eligibler Patienten</td>
<td>Keine Angabe</td>
</tr>
<tr>
<td>Anzahl eingeschlossener Patienten pro Gruppe</td>
<td>Intervention: n = 25 Kontrolle: n = 25</td>
</tr>
<tr>
<td>Anzahl Patienten mit ausgewerteten Ergebnissen</td>
<td>Keine Angabe</td>
</tr>
<tr>
<td>Dropouts</td>
<td>Keine Angabe</td>
</tr>
<tr>
<td>Schlussfolgerung der Autoren</td>
<td>Die Ergebnisse legen den Schluss nahe, dass oxidativer Stress in Dialysepatienten einer der stimulierenden Faktoren eines abnormalen Lipidmetabolismus und der Atherosklerose darstellt.</td>
</tr>
<tr>
<td>Kommentar</td>
<td>Da Angaben zu Dropouts fehlen ist völlig unklar, ob Selektionsfaktoren eine Rolle für die Parameterschätzer spielen könnten, Begleitmedikation ist ebenfalls nicht angegeben. Gegenüber der Gefahr des multiplen Testens wurde ebenfalls nicht adjustiert. Die Auswertung der wiederholten Messungen mit multiplen t-Tests ist grundsätzlich ohnehin inadäquat. Im Methodikteil wurde zudem nicht angegeben, ob unterschiedliche Tests für abhängige und unabhängige Messungen verwendet wurden.</td>
</tr>
</tbody>
</table>

ACI = Aortic Calcification Index. CLE = Vitamin E-beschichtete Membran. MDA = Malondialdehyde. oxLDL = Oxidiertes Low Density Lipoprotein. preHD = Vor der Dialysebeginn. postHD = Nach der Dialysebeginn.
Quelle
Nakamura 2003

Fragestellung
Effekte der LDL-Apherese und Vitamin E-gebundener Membranen auf die Atherosklerose der Karotiden bei Hämodialysepatienten mit oblitterierender Arteriosklerose.

Ort der Rekrutierung und Setting
Japan

Zeitraum der Rekrutierung
Keine Angabe

Studientyp
Nicht-randomisierte Interventionsstudie mit Kontrollgruppe: Kohortenstudie

Evidenzniveau
IIa

Ein-/ Ausschlusskriterien
Die Einschlusskriterien betreffen nur die LDL-Apherese: geringe periphere Durchblutung, blasse, offene Stellen, verschließende Stadien der Atherosklerose, Versagen konventioneller Medikation

Anzahl Gruppen
4

Interventionen
- Gruppe B: Dialysebehandlung mit Vitamin E-beschichteter Membran
- Gruppe D: Dialysebehandlung mit Vitamin E-beschichteter Membran und LDL-Apherese

Intervention Kontrollen
- Gruppe A: Dialysebehandlung mit konventioneller Zellulose- oder synthetischen Membran
- Gruppe C: Dialysebehandlung mit konventioneller Membran und LDL-Apherese

Zuweisung der Intervention
Ohne Randomisierung

Follow-Up
Zehn Wochen für alle Gruppen

Primäre Zielgrößen
Keine Fallzahlberechnung

Sekundäre Zielgrößen
- IMT der Karotiden, die Versteifung der Arterien gemessen an der Geschwindigkeit des arteriellen Pulses (PWV), CRP im Plasma und IL-6
- Angiographie, Plethysmographie, Thermographie, ABI

Statistische Analyse
Die statistische Analyse wurde mit dem Student's-t-Test für verbundene und unverbundene Stichproben oder durch eine zweifache Varianzanalyse durchgeführt. Ein p-Wert < 0,05 wurde als signifikant gewertet. Die Ergebnisse wurden durch Mittelwerte und die Standardabweichung dargestellt.

Anzahl eligibler Patienten
Keine Angabe

Anzahl eingeschlossener Patienten pro Gruppe
- Gruppe A: n = 12
- Gruppe B: n = 7
- Gruppe C: n = 6
- Gruppe D: n = 5

Anzahl Patienten mit ausgewerteten Ergebnissen
30

Dropouts
Keine

Patientencharakteristika

Vergleichbarkeit
Keine Angaben über statistisch signifikante Unterschiede.
Antioxidative Vitamine zur Prävention kardiovaskulärer Erkrankungen nach Nierentransplantation und bei chronischer Niereninsuffizienz

Fortsetzung: Nakamura 2003

<table>
<thead>
<tr>
<th>Quelle</th>
<th>Nakamura 2003</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ergebnisse</td>
<td></td>
</tr>
</tbody>
</table>
| In den Gruppen A und B wurden nur geringe Änderungen der Lipide festgestellt. In den Gruppen C und D (Dialyse mit Vitamin E-beschichteter Membran) wurde nach der Studiendauer eine signifikante Verminderung der Konzentrationen an Serum Cholesterin (272 ± 36 mg/dl vs. 258 ± 30 mg/dl für Gruppe C und 270 ± 48 mg/dl vs. 150 ± 28 mg/dl für Gruppe D), an LDL Cholesterin (168 ± 32 mg/dl vs. 76 ± 20 mg/dl für Gruppe C und 170 ± 36 mg/dl vs. 72 ± 19 mg/dl für Gruppe D), und an Triglyceriden (216 ± 52 mg/dl vs. 158 ± 32 mg/dl für Gruppe C und 209 ± 50 mg/dl vs. 150 ± 36 mg/dl für Gruppe D) festgestellt. Die p-Werte dafür waren jeweils < 0,01. Die PWV-Werte änderten sich in Gruppe A wenig, in Gruppe B zeigten sich erkennbare, aber nicht-signifikante Änderungen. Die Gruppe C und D zeigten verringerte signifikante Werte beim Vergleich der Werte vor und nach der Intervention (p < 0,05 bzw. p < 0,01).
| Der ABI zeigte über die gesamte Studiendauer in allen Gruppen wenig Änderung. Die IMT-Werte zeigten in Gruppe A wenig Änderung, in Gruppe B erkennbare, aber nicht-signifikante Änderungen. Die Gruppen C und D zeigten verringerte signifikante Werte nach der Intervention (p < 0,05 bzw. p < 0,01). Ähnliche Ergebnisse für die Gruppen lagen bei der Konzentration des Plasmas IL-6 und des CRP vor (Gruppe A und B keine signifikanten Unterschiede, Gruppe C und D signifikante Unterschiede beim Vergleich der Werte vor und nach der Intervention (p < 0,05 bzw. p < 0,01)).

| Schlussfolgerung der Autoren | Die Ergebnisse lassen vermuten, dass die LDL-Apherese in Kombination mit einer Dialyse mit Vitamin E-beschichteter Membran eine weitere Progression der Atherosklerose in Hämodialysepatienten mit ASO verhindert. |
| **Kommentar** | Keine Angabe zum Unterschied zwischen den Gruppen. Ausführliche Dokumentation der Begleitmedikation |

Quelle Pertosa 2002

Fragstellung	Beeinflusst die Verwendung einer Vitamin E-gebundenen Membran die Aktivierung der JNK in PBMC?
Funktion des Biomarkers	Bei der JNK handelt es sich um eine Mitogen-aktivierte Proteinkinase, die durch Stressfaktoren mittels Phosphorylierung aktiviert wird. Das C5b-9 ist ein Faktor des vorwiegend durch Reperfusionsschaden aktivierten Komplementkomplexes, der in weiteren Reaktionen Leukozyten aktiviert.
Ort der Rekrutierung und Setting	Italien
Zeitraum der Rekrutierung	Keine Angabe
Studientyp	Randomisierte kontrollierte Studie
Evidenzniveau	I
Ein- Ausschlusskriterien	Keine Diabetiker, keine Stoffwechselstörungen, Infektionen, Leukopenie, aktive immunologische Prozesse oder Krebs
Anzahl Zentren	Zwei „Cross-Over“-Design
Intervention	Zwei „Cross-Over“-Design
Verum 1	Die Interventionsgruppe wird zuerst drei Monate mit einer Vitamin E-gebundenen Membran dialysiert und wechselt dann für weitere drei Monate in die Kontrollgruppe, während die Kontroll- in die Interventionsgruppe wechselt.
Intervention Kontrolle	Die Kontrollgruppe wird zuerst drei Monate mit einer Zellulosemembran ohne gebundenes Vitamin E dialysiert und wechselt dann für weitere drei Monate in die Interventionsgruppe, während die Interventions- in die Kontrollgruppe wechselt.
Zuweisung der Intervention	Randomisiert, keine Angabe zu verdeckter Zuweisung
Art der Randomisierung	Keine Angabe
Verblindung	Patienten
Follow-Up	Sechs Monate
Primäre Zielgrößen	Keine Fallzahlberechnung

ABI = Ankle Brachial Index. ASO = Obliterierende Arteriosklerose. CRP = C-reaktives Protein. IL-6 = Interleukin-6. IMT = Intima Media Dicke. Kt / V = Dialysequantifizierungswert. LDL = Low Density Lipoprotein. PWV = Pulswellengeschwindigkeit.
Antioxidative Vitamine zur Prävention kardiovaskulärer Erkrankungen nach Nierentransplantation und bei chronischer Niereninsuffizienz

Fortsetzung: Pertosa 2002

<table>
<thead>
<tr>
<th>Quelle</th>
<th>Pertosa 2002</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sekundäre Zielgrößen</td>
<td>Aktivierung der JNK in PBMC gemessen an deren Phosphorylierung. Konzentrationen des C5b-9, Aktivierung von PBMC nachgewiesen durch die Genexpression der iNOS durch in situ Hybridisierung</td>
</tr>
<tr>
<td>Statistische Analyse</td>
<td>Die statistische Analyse wurde mit dem Student’s-t-Test für verbundene und unverbundene Stichproben durchgeführt. Ein p-Wert < 0,05 wurde als signifikant gewertet. Die Ergebnisse wurden durch Mittelwerte und die Standardabweichung dargestellt.</td>
</tr>
<tr>
<td>Anzahl elegibler Patienten</td>
<td>Keine Angabe</td>
</tr>
<tr>
<td>Anzahl eingeschlossener Patienten pro Gruppe</td>
<td>4</td>
</tr>
<tr>
<td>Anzahl Patienten mit ausgewerteten Ergebnissen</td>
<td>8</td>
</tr>
<tr>
<td>Dropouts</td>
<td>Keine</td>
</tr>
<tr>
<td>Vergleichbarkeit</td>
<td>„Cross-Over“-Design, keine Angabe Patientencharakteristika in Bezug auf Erstinterventions- und Zweitinterventionsgruppe</td>
</tr>
<tr>
<td>Ergebnisse</td>
<td>Die PBMC wurden zur Untersuchung nach der dreimonatigen Behandlungsdauer bei der letzten Dialyse vor (T0), während (T15), unmittelbar am Ende der dreistündigen Dialyse untern (T180) und noch einmal 200 Minuten nach Ende der Sitzung (T480) entnommen. Die Konzentrationen an C5b-9 waren bei der Kontroll- zum Zeitpunkt T0 höher als bei der Interventionsgruppe (p < 0,005). Im Verlauf der Dialyse stiegen die Konzentrationen in beiden Gruppen an, wobei der Unterschied zwischen ihnen erkennbar blieb. Zum Zeitpunkt T480 konnte in der Interventionsgruppe ein starker Abfall der Konzentration zur Ausgangskonzentration festgestellt werden, wobei die Konzentration in der Kontrollgruppe signifikant höher war (p < 0,005). Es konnte eine hohe iNOS mRNA Genexpression von PBMC, isoliert von Patienten unter Dialyse mit Zellulosemembran beobachtet werden (230,875 ± 32,152 AU/pixel). Bei Patienten unter Dialyse mit Vitamin E-gebundenen Membran war die iNOS-Expression reduziert (50,689 ± 10,253 AU/pixel). Die Unterschiede im Vergleich der beiden Gruppen waren signifikant (p < 0,01). Ein auffälliger Anstieg der Phosphorylierung der JNK wurde zum Zeitpunkt T180 unter Verwendung einer Zellulosemembran festgestellt, wobei der Unterschied zwischen den beiden Gruppen bei einem p-Wert von 0,025 auftrat.</td>
</tr>
</tbody>
</table>

AU = Arbitrary Units. C5b-9 = Terminaler Komplementkomplex; iNOS = Induzierbare NO-Synthase. JNK = Jun-N-terminale Kinase. NO = Stickstoffmonoxid. PBMC = Periphere mononukleare Blutzellen. Tx = Zeitpunkt der Messung in Minuten nach dem Dialysebeginn.
Antioxidative Vitamine zur Prävention kardiovaskulärer Erkrankungen nach Nierentransplantation und bei chronischer Niereninsuffizienz

<table>
<thead>
<tr>
<th>Quelle</th>
<th>Tarng 2000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fragestellung</td>
<td>Effekte der Anwendung einer Vitamin E-beschichteten Membran bei Hämodialysepatienten anhand der Schädigung der DNA in Leukozyten gemessen am Level des 8-OHdG.</td>
</tr>
<tr>
<td>Ort der Rekrutierung und Setting</td>
<td>Dialysezentren in Taipei, Taiwan</td>
</tr>
<tr>
<td>Zeitraum der Rekrutierung</td>
<td>Dezember / 1998 bis Mai / 1999</td>
</tr>
<tr>
<td>Studientyp</td>
<td>Nicht-randomisierte Interventionsstudie (A) und randomisierte „Cross-Over“-Studie (B)</td>
</tr>
<tr>
<td>Evidenzniveau</td>
<td>IIa</td>
</tr>
<tr>
<td>Anzahl Zentren</td>
<td>4</td>
</tr>
</tbody>
</table>
| Anzahl Gruppen | Gruppe 1: Dialyse über mindestens drei Monate mit CLS
Gruppe 2: Dialyse über mindestens drei Monate mit CLE
Gruppe 3: Dialyse über mindestens drei Monate mit einer PMMA
Gruppe 4: Dialyse über mindestens drei Monate mit einer PS |
| Intervention 1 | 34 Patienten der Gruppe 1 wechseln acht Wochen lang in die Gruppen 2, 3 und 4 |
| Intervention 2 | Elf Patienten der Gruppe 2, zehn der Gruppe 3 und elf der Gruppe 4 wechseln acht Wochen lang in die Gruppe 1 |
| Zuweisung der Intervention | Randomisiert |
| Art der Randomisierung | Keine Angabe |
| Verblindung | Keine Angabe |
| Follow-Up | Acht Wochen |
| Primäre Zielgrößen | Keine Fallzahlberechnung angegeben |
| Sekundäre Zielgrößen | 8-OHdG-Konzentration, ROS-Produktion gemessen an Hydroperoxiden und Sauerstoffradikal nach Stimulation mit PMA, Vitamin E-Konzentration |
| Anzahl eligibler Patienten | 353 |
Anzahlen eingeschlossener Patienten pro Gruppe

<table>
<thead>
<tr>
<th>Studie A</th>
<th>Studie B</th>
<th>Aus A1</th>
<th>Aus A2 in B1</th>
<th>Aus A3 in B1</th>
<th>Aus A4 in B1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gruppe A4: N = 20 (PS)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Anzahl Patienten mit ausgewerteten Ergebnissen

<table>
<thead>
<tr>
<th>Studie A: 110 Patienten</th>
<th>Studie B: N = 34 aus Gruppe 1 verteilt auf Gruppe 2 (zwei), Gruppe 3 (elf) und Gruppe 4 (elf)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N = 32 aus Gruppe 2 (elf), Gruppe 3 (zehn) und Gruppe 4 (elf) in Gruppe 1</td>
<td></td>
</tr>
</tbody>
</table>

Dropouts

Keine

Patientencharakteristika

Nur für Studie A angegeben

- Gruppe 1: 17 Männer und 24 Frauen, das durchschnittliche Alter war 60 ± 16 Jahre, Diabetes hatten 17 Patienten und das durchschnittliche Dialysealter betrug 32 ± 25 Monate.
- Gruppe 1: Zehn Männer und 30 Frauen, das durchschnittliche Alter war 59 ± 15 Jahre, Diabetes hatten neun Patienten und das durchschnittliche Dialysealter betrug 34 ± 21 Monate.
- Gruppe 1: Neun Männer und elf Frauen, das durchschnittliche Alter war 61 ± 14 Jahre, Diabetes hatten fünf Patienten und das durchschnittliche Dialysealter betrug 29 ± 18 Monate.
- Gruppe 1: Acht Männer und 16 Frauen, das durchschnittliche Alter war 60 ± 15 Jahre, Diabetes hatten acht Patienten und das durchschnittliche Dialysealter betrug 26 ± 20 Monate.

Von allen Patienten wurden außerdem die Werte für Vitamin C- und E-Aufnahmen, die 8-OHdG-Konzentration, Ascorbat, Konzentrationen von Vitamin E und von lipidkorrigiertem Vitamin E, von Ferritin, Eisen im Serum und die Transferrinsättigung erhoben.

Die Niereninsuffizienz entwickelte sich aufgrund von Diabetes (29), Glomerulonephritis (28), interstitielle Nephritis (12), Hypertonie (13), systemischer Lupus erythematosides (acht) und unklare Diagnose (20).

Vergleichbarkeit

Nur auf Studie A bezogen, für B keine Angaben

Die Konzentrationen von Vitamin E und von lipidkorrigiertem Vitamin E im Serum waren in Gruppe A1 signifikant niedriger als in den anderen drei Gruppen (im paarweisen Gruppenvergleich je p < 0,05). Die Serumkonzentration an Eisen und Ferritin waren in Gruppe A1 und Gruppe A4 am höchsten, in den anderen beiden Gruppen niedriger (p < 0,001). Die 8-OHdG-Konzentration war in Gruppe A1 am höchsten, in den anderen Gruppen vergleichbar, aber niedriger als in Gruppe 1 (p < 0,001).
Antioxidative Vitamine zur Prävention kardiovaskulärer Erkrankungen nach Nierentransplantation und bei chronischer Niereninsuffizienz

<table>
<thead>
<tr>
<th>Quelle</th>
<th>Targ 2000</th>
</tr>
</thead>
</table>
| Ergebnisse | Studie A: Die Konzentration an 8-OHdG zeigte eine negative Korrelation mit den Konzentrationen an Vitamin E und lipidkorrigiertem Vitamin E (\(r = -0,379, p < 0,001 \) bzw. \(r = -0,489, p < 0,001 \)). Im multivariaten Regressionsmodell zeigten sich der Membrantyp (\(\beta^1 = -4,38 (-8,28; -0,49) p = 0,028; \beta^2 = -8,27 (-12,54; -3,95) p < 0,001, \)) lipidkorrigiertes Vitamin E (\(\beta = -3,13 (-5,04; -1,21) p = 0,007 \)) und die Eisenkonzentration (\(\beta = 0,15 (0,07; 0,24) p = 0,001 \)) als unabhängige Prädiktormodule der 8-OHdG-Konzentration. Die ROS-Produktion bei Gruppe A2 war gegenüber Gruppe A1 nach einer Dialysetermin erhöht (\(p < 0,05 \)).
Studie B: Der Wechsel der CLS auf die CLE nach acht Wochen bewirkte eine Senkung der 8-OHdG-Konzentration um 41 %, \(p < 0,01 \) und eine Erhöhung der lipidkorrigierten Vitamin E-Konzentration um 42 % (\(p < 0,01 \)). Der Wechsel der CLE zur CLS bewirkte nach acht Wochen einen Anstieg der 8-OHdG-Konzentration um 66 %, \(p < 0,01 \) und eine Senkung der lipidkorrigierten Vitamin E-Konzentration um 41 % (\(p < 0,01 \)). |
| Schlussfolgerung der Autoren | CLE wiesen bioaktive und biokompatible Charakteristiken auf. Sie reduzierten ebenso wie die synthetischen Membranen die 8-OHdG-Konzentration in der DNA von Leukozyten, unterdrückten die ROS-Produktion in Granulozyten und erhalten die Plasma-Vitamin E-Konzentration. |
| Kommentar | Differenzierte und adäquate statistische Analyse |

8-OHdG = 8-hydroxy-2’-deoxyguanosine. \(\beta^1 \) = PMMA = Polymethylmetacrylatemembran. \(\beta^2 \) = PS = Polysulfonmembran. \(\beta^3 \) = CLE = Vitamin E-beschichteter Membran. CLS = Zellulosemembran. PBMC = Periphere mononukleare Blutzellen. PMA = Phorbol-12-Myristate-13-Acetat. ROS = Reaktive Sauerstoffspezies.

<table>
<thead>
<tr>
<th>Quelle</th>
<th>Tsuruoka 2002</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fragestellung</td>
<td>Effekte der Vitamin E-beschichteten Membran auf die Superoxidanioproduktion in neutrophilen Granulozyten und dem oxidativen Stress bei Hämodialysepatienten</td>
</tr>
<tr>
<td>Ort der Rekrutierung und Setting</td>
<td>Keine Angabe (Studie aus Japan)</td>
</tr>
<tr>
<td>Zeitraum der Rekrutierung</td>
<td>Keine Angabe</td>
</tr>
<tr>
<td>Studientyp</td>
<td>Nicht-verblindete randomisierte Studie und „Cross-Over“-Design</td>
</tr>
<tr>
<td>Evidenzniveau</td>
<td>Ila</td>
</tr>
<tr>
<td>Ein-/ Ausschlusskriterien</td>
<td>Diabetiker wurden ausgeschlossen</td>
</tr>
<tr>
<td>Anzahl Zentren</td>
<td>1</td>
</tr>
<tr>
<td>Anzahl Gruppen</td>
<td>2</td>
</tr>
<tr>
<td>Intervention Gruppe 1</td>
<td>Dialyse mit Hemophanmembran (vier Wo), Dialyse mit Vitamin E-beschichteter Membran (zwölf Wo), Dialyse mit Hemophanmembran (vier Wo), Kontrollbehandlung mit Zellulosemembran ohne gebundenes Vitamin E (zwölf Wo)</td>
</tr>
<tr>
<td>Intervention Gruppe 2</td>
<td>Dialyse mit Hemophanmembran (vier Wo), Dialyse mit Zellulosemembran ohne gebundenes Vitamin E (zwölf Wo), Dialyse mit Hemophan (vier Wo), Dialyse mit Vitamin E-beschichteter Membran (zwölf Wo)</td>
</tr>
<tr>
<td>Zuweisung der Intervention</td>
<td>Randomisiert, keine Angabe zum Concealment</td>
</tr>
<tr>
<td>Art der Randomisierung</td>
<td>Keine Angaben</td>
</tr>
<tr>
<td>Verblindung</td>
<td>Keine Verblindung</td>
</tr>
<tr>
<td>Follow-Up</td>
<td>32 Wochen</td>
</tr>
<tr>
<td>Primäre Zielgrößen</td>
<td>Keine Fallzahlberechnung angegeben</td>
</tr>
<tr>
<td>Sekundäre Zielgrößen</td>
<td>Anzahl der WBC und PMN, Aktivität der PMN gemessen an der Superanionproduktion, Cholesterin, oxidiertes LDL und MDA.</td>
</tr>
<tr>
<td>Statistische Analyse</td>
<td>Die Daten wurden durch die Varianzanalyse (ANOVA) für wiederholte Messungen analysiert und wenn es angebracht war, mit dem Students’s t Test getestet. Die Daten sind mit Mittelwerten und Standardfehler angegeben.</td>
</tr>
<tr>
<td>Anzahl eligibler Patienten</td>
<td>Keine Angabe</td>
</tr>
</tbody>
</table>
Antioxidative Vitamine zur Prävention kardiovaskulärer Erkrankungen nach Nierentransplantation und bei chronischer Niereninsuffizienz

Fortsetzung: Tsuruoka 2002

<table>
<thead>
<tr>
<th>Quelle</th>
<th>Tsuruoka 2002</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anzahl eingeschlossener Patienten pro Gruppe</td>
<td>Nicht beschrieben, beide Gruppen zusammen: n = 10</td>
</tr>
<tr>
<td>Anzahl Patienten mit ausgewerteten Ergebnissen</td>
<td>10</td>
</tr>
<tr>
<td>Dropouts</td>
<td>Keine</td>
</tr>
<tr>
<td>Patientencharakteristika</td>
<td>Die Patienten (vier Männer und sechs Frauen) hatten ein durchschnittliches Alter von 55 ± 6 Jahren ein Dialysealter von 9,5 ± 2,9 Jahren. Die Gründe der Niereninsuffizienz waren Glomerulonephritis (neun) und polyzystische Nierenerkrankung (ein). Die Werte für Serum Harnstoff und Kreatinin lagen bei 77 ± 8 und 8,3 ± 1,2 mg/dl. Das Hämokrit lag bei 31,9 % ± 2,5 %. Bei keinem Patienten ließen sich erhöhte Werte für C-reaktives Protein oder Anzeichen einer Entzündung finden. Sieben von ihnen wurden mit Blutdrucksenkern therapiert und alle erhielten Kalziumcarbonat.</td>
</tr>
<tr>
<td>Vergleichbarkeit</td>
<td>Wegen des „Cross-Over“-Designs ergeben sich, abgesehen von einem möglichen „Carry-Over“-Effekt zwischen den Gruppen keine Unterschiede.</td>
</tr>
<tr>
<td>Ergebnisse</td>
<td>Die Zielgrößen wurden jeweils zu Beginn und nach einer und vier Stunden nach dem Ende der ersten und der letzten Dialysealtermittlung der zwölfwöchigen Behandlungszeiten gemessen. Die Werte für die Dialysequalität (Kt / V) waren bei beiden Behandlungsgruppen gleich (1,29 ± 0,19 für die Vitamin E-beschichtete Membran und 1,34 ± 0,17 für die Zellulosemembran). Die Anzahl der WBC lag zum Beginn der Studie bei 5,231 ± 498 /µl. Die Messungen der Anzahl der WBC und der Neutrophilen während der ersten Dialyse unter den verschiedenen Membranen ergab nach einer Stunde eine geringere Reduzierung bei der Vitamin E-beschichteten Membran. Nach der zwölfwöchigen Behandlung mit den verschiedenen Membranen zeigte sich die Reduzierung während der Dialysealtermittlung weniger deutlich. Die Unterschiede zwischen den beiden Gruppen war signifikant (p = 0,04). Die Superoxidanionen Produktion bei der ersten Dialysealtermittlung war nach einer Stunde bei 0,229 ± 0,013 pmol/3x10⁵ Zellen/h und unter Verwendung der Vitamin E-beschichteten Membran und bei 0,220 ± 0,021 pmol/6x10⁵ Zellen/h unter Verwendung der Zellulosemembran. Vier Stunden nach der Dialyse war dieser Wert signifikant erniedrigt (0,155 ± 0,019 und 0,41 ± 0,018 pmol/3x10⁵ Zellen/h) Nach zwölf Dialysebehandlungen sank dieser Wert bei der Gruppe mit der Vitamin E-beschichteten Membran signifikant auf 0,157 ± 0,026 pmol/3x10⁵ Zellen/h, p < 0,01 gegenüber der Messung bei der ersten Sitzung). Bei Verwendung der Zellulosemembran ergaben sich nach vier Stunden nach der Dialyse ähnlich reduzierte Werte wie bei der ersten Sitzung, die Werte für die Vitamin E-beschichtete Membran blieben jedoch gleich. Die Unterschiede zwischen den Gruppen, die mit der Varianzanalyse für wiederholte Messungen analysiert wurde, waren signifikant (p = 0,02). Nach der zwölfwöchigen Behandlung waren die Werte für oxidiertes LDL und MDA in der Gruppe, die mit Vitamin E-beschichteter Membran dialysiert wurde signifikant gegenüber der Kontrollgruppe reduziert (p < 0,05). Ebenso verhielten sich die Werte für das Cholesterin (keine p-Werte angegeben).</td>
</tr>
<tr>
<td>Schlussfolgerung der Autoren</td>
<td>Die Verwendung einer Vitamin E-beschichteten Membran über zwölf Wochen verbesserte anscheinend die Funktion der neutrophilen Granulozyten, den oxidativen Stress und die LDL-Konzentrationen. Diese Membran könnte eine Verringerung der Inzidenz an kardiovaskulären Erkrankungen bei Nierenerkrankten bewirken.</td>
</tr>
<tr>
<td>Kommentar</td>
<td>Keine Angabe der Gruppengröße, keine Berücksichtigung des „Cross-Over“-Designs bei der Auswertung.</td>
</tr>
</tbody>
</table>

LDL = Low Density Lipoprotein; MDA = Malondialdehyd; Kt / V = Dialysequantifizierungsindex. PMN = Polymorphonukleare Leukozyten. WBC = Anzahl der weißen Blutkörperchen. Wo = Woche.
Quelle

Usberti 2002

<table>
<thead>
<tr>
<th>Fragestellung</th>
<th>Effekte der Dialyse mit Vitamin-E-beschichteter Membran auf oxidative Stressmarker im Plasma und Anämie bei Hämodialysepatienten</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ort der Rekrutierung und Setting</td>
<td>Italien</td>
</tr>
<tr>
<td>Zeitraum der Rekrutierung</td>
<td>Keine Angabe</td>
</tr>
<tr>
<td>Studientyp</td>
<td>Interventionsstudie mit Kontrollgruppe, teilweise „Cross-Over“-Design: Kohortenstudie, laut Abstract „randomly assigned“, wird aber im Text nicht belegt.</td>
</tr>
<tr>
<td>Evidenzniveau</td>
<td>IIa</td>
</tr>
</tbody>
</table>
| Ein-/ Ausschlusskriterien | Einschlusskriterien: nicht angegeben
Ausschlusskriterien: Patienten mit Diabetes, Lebererkrankungen, Krebs oder immunologische Erkrankungen. |
| Anzahl Zentren | Keine Angabe |
| Anzahl Gruppen | 3 |
| Intervention Verum 1 | Gruppe C1: hohe EPO-Dosis von 119 ± 30 U/kg/Wo, Dialyse mit Vitamin-E-beschichteter Membran für drei Monate
Gruppe C2: Gruppe C1, die nach drei Monaten mit hohen Dosen EPO zu niedrigen Dosen (56 ± 11 U/kg/Wo) für weitere drei Monate umgestellt wurde, Dialyse mit Vitamin-E-beschichteter Membran |
| Intervention Kontrolle | Gruppe A: hohe Dosis EPO von 129 ± 40 U/kg/Wo, Dialyse mit konventioneller Membran
Gruppe B: niedrige EPO-Dosis von 51 ± 8 U/kg/Wo, Dialyse mit konventioneller Membran |
| Zuweisung der Intervention | Unklar |
| Art der Randomisierung | Keine Angabe |
| Verblindung | Keine Angabe |
| Follow-Up | Sechs Monate |
| Primäre Zielgrößen | Keine Fallzahlberechnung |
| Sekundäre Zielgrößen | Halbwertsüberlebenszeiten der roten Blutzellen (51Cr T/2), Lipidperoxidationsprodukte MDA und 4-HNE Oxidierbarkeit der Lipide (ROMs Test), TAS, Konzentrationen von Vitamin E, von -SH und von Hcy |
| Statistische Analyse | Zum Vergleich der Mittelwerte der vier Gruppen nach ANOVA wurde der Student Newman Keuls Test verwendet. Für den Vergleich der Ergebnisse der Gruppen C1 und C2 wurde der Student’s-t-Test für verbundene Stichproben verwendet. Die Tests wurden als signifikant gewertet, wenn der p-Wert kleiner 0,05 war. |
| Anzahl elegibler Patienten | Keine Angabe |
| Anzahl eingeschlossener Patienten pro Gruppe | Gruppe A: n = 18
Gruppe B: n = 20
Gruppe C1 = Gruppe C2: n = 9 |
| Anzahl Patienten mit ausgewerteten Ergebnissen | 47, die Überlebenszeit der roten Blutkörperchen wurde nur bei sieben Patienten der Gruppe A, bei sieben Patienten der Gruppe B und bei acht Patienten der Gruppe C2 analysiert. |
| Dropouts | Keine, bei der Korrelationsanalyse wurden drei Patienten nachträglich ausgeschlossen |
Antioxidative Vitamine zur Prävention kardiovaskulärer Erkrankungen nach Nierentransplantation und bei chronischer Niereninsuffizienz

<table>
<thead>
<tr>
<th>Quelle</th>
<th>Usberti 2002</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ergebnisse</td>
<td>(EPO-Dosis abhängige Ergebnisse nicht berichtet, da nicht relevant.) Im Vergleich der vier Gruppen zeigte Gruppe B geringere Plasma ROM (keine p-Werte angegeben) und Gruppe A geringere Vitamin E-Konzentrationen (p < 0,01 und p < 0,05) und höhere Konzentrationen für -SH (keine p-Werte angegeben). In Gruppe A waren die MDA-4HNE-Konzentrationen höher als in Gruppe C1 (p < 0,01), allerdings waren die Werte verglichen mit Gruppe B und C2 nicht-signifikant erhöht. Die TAS-Konzentrationen wurden durch die Interventionen nicht beeinflusst. Unter dem Einfluss einer Vitamin E-beschichteten Membran waren die Vitamin E-Konzentrationen höher (gegen A: p < 0,01 und gegen B: p < 0,05) und die -SH-Konzentrationen im Plasma erniedrigt (keine p-Werte angegeben). Diese Ergebnisse waren mit einer erniedrigten Lipidperoxidation assoziiert; die MDA-4HNE-Konzentrationen zeigten in Gruppe C1 (hohes EPO und Vitamin E-Membran) gegenüber Gruppe A geringere Werte (1,31 ± 0,44 zu 1,74 ± 0,41 µmoles/l, p < 0,01), der Vergleich der Gruppen mit unterschiedlichen Membranen und geringen EPO-Dosen zeigte diesen Effekt nicht (keine p-Werte angegeben). Eine signifikante negative Korrelation wurde zwischen der Vitamin E-Konzentration und -SH (r = -0,47; p < 0,001) oder mit der MDA-4HNE (r = -0,46; p < 0,001) gefunden. (drei Patienten wurden bei dieser Analyse ausgeschlossen.) Die EPO-Dosis korrelierte negativ mit der Plasma ROM-Konzentration (r = -0,43; p < 0,001). Die Plasma-Vitamin E-Konzentrationen korrelierten positiv mit Hämoglobin- und den 51Cr T/2-Werten (r = 0,8; p < 0,001 und r = 0,90; p < 0,0001). Patienten, die ein Plasmalevel von über 60 µmol/l aufwiesen zeigten eher normale Halbwertsüberlebenszeiten für rote Blutkörperchen und gesättigte Hämoglobinwerte.</td>
</tr>
<tr>
<td>Kommentar</td>
<td>Korrelationsanalyse in der Beschreibung der Statistik nicht angegeben.</td>
</tr>
</tbody>
</table>

6 Literaturverzeichnis

6.1 Verwendete Literatur

30. Lehr HA; Sagban TA; Kirkpatrick CJ: **[Atherosclerosis--progression by nonspecific activation of the immune system]**. In: Medizinische Klinik (Munich) 97 (2002). Nr. 4, S. 229-235.

35. Mann JF; Lonn EM; Yi Q; Gerstein HC; Hoogwerf BJ; Pogue J; Bosch J; Dagenais GR; Yusuf S: **Effects of vitamin E on cardiovascular outcomes in people with mild-to-moderate renal insufficiency: results of the HOPE study**. In: Kidney international. 65 (2004). Nr. 4, S. 1375-1380.

37. Moher D; Cook DJ; Eastwood S; Olkin I; Rennie D; Stroup DF: **Improving the quality of reports of meta-analyses of randomised controlled trials: the QUORUM statement**. In: Lancet (1999). Nr. 354, S. 1896-1900.

40. Odetti P; Garibaldi S; Gurreri G; Aragno I; Dapino D; Pronzato MA; Marinari UM: **Protein oxidation in hemodialysis and kidney transplantation**. In: Metabolism 45 (1996). Nr. 11, S. 1319-1322.

44. Shekelle P; Hardy ML; Coulter I; Udani J; Spar M; Oda K; Jungvig LK; Tu W; Suttorp MJ; Valentine D; Ramirez L; Shanman R; Newberry SJ: **Effect of the supplemental use of antioxidants vitamin C, vitamin E, and coenzyme Q10 for the prevention and treatment of cancer.** In: Evidence report / technology assessment. (Summ.) 2003). Nr. 75, S. 1-3.

45. Siems WG; Sommerburg O; Grune T: **Erythrocyte free radical and energy metabolism.** In: Clinical nephrology. 53 (2000). Nr. 1 Suppl, S. 9-17.

47. Sommerburg, O; Sostmann, K; Grune, T; Ehrich, JH: **Oxidative stress in hemodialysis patients treated with a dialysis membrane which has alpha-tocopherol bonded to its surface.** In: Biofactors 10 (1999). Nr. 2-3, S. 121-124.

49. Stephens NG; Parsons A; Schofield PM; Kelly F; Cheeseman K; Mitchinson MJ; Brown MJ: **Randomised controlled trial of Vitamin E in patients with coronary disease: Cambridge Heart Antioxidant Study (CHAOS).** In: Lancet (1996). Nr. 247, S. 781-786.

50. Tarng DC; Huang TP; Wei YH; Liu TY; Chen HW; Wen CT; Yang WC: **8-hydroxy-2'-deoxyguanosine of leukocyte DNA as a marker of oxidative stress in chronic hemodialysis patients.** In: American journal of kidney diseases: the official journal of the National Kidney Foundation. 36 (2000). Nr. 5, S. 934-944.

53. Wautier JL; Guillausseau PJ: **Advanced glycation end products, their receptors and diabetic angiopathy.** In: Diabetes & metabolism. 27 (2001). Nr. 5 Pt 1, S. 535-542.

6.2 Bewertete Literatur

57. Calò LA; Naso A; Pagnin E; Davis PA; Castoro M; Corradin R; Riegler P; Cascone C; Huber W; Piccoli A: Vitamin E-coated dialyzers reduce oxidative stress related proteins and markers in hemodialysis—a molecular biological approach. In: Clinical nephrology 62 (2004). Nr. 5, S. 355-361.

58. Chao JCJ; Yuan MD; Chen PY; Chien SW: Vitamin C and E supplements improve the impaired antioxidant status and decrease plasma lipid peroxides in hemodialysis patients. In: Journal of nutritional biochemistry 13 (2002). Nr. N11, S. 653-663.

59. Clermont G; Lecour S; Cabanne JF; Motte G; Guilland JC; Chevet D; Rochette L: Vitamin E-coated dialyzer reduces oxidative stress in hemodialysis patients. In: Free radical biology & medicine 31 (2001). Nr. 2, S. 233-241.

62. Hara T; Takahashi N; Kiyomoto H; Aki Y; Fujikoda H; Shokoji T; Matsubara K; Moriwak, K; Kondo N; Kiyomoto K; Hirohata M; Ishizu T; Akiyama K; Nishiyama A; Ohmori K; Kohno M: Reduction of Oxidized Low-Density Lipoprotein by the Long-Term Use of Vitamin E-Coated Dialyzers in Hemodialysis Patients. In: Dialysis and Transplantation 33 (2004). Nr. 4, S. 197-207.

64. Kobayashi S; Moriya H; Aso K; Ohtake T: Vitamin E-bonded hemodialyzer improves atherosclerosis associated with a rheological improvement of circulating red blood cells. In: Kidney international 63 (2003). Nr. 5, S. 1881-1887.

65. Mann JF; Lonn EM; Yi Q; Gerstein HC; Hoogwerf BJ; Pogue J; Bosch J; Dagenais GR; Yusuf S: Effects of vitamin E on cardiovascular outcomes in people with mild-to-moderate renal insufficiency: results of the HOPE study. In: Kidney international 65 (2004). Nr. 4, S. 1375-1380.
66. Mune M; Yukawa S; Kishino M; Otani H; Kimura K; Nishikawa O; Takahashi T; Kodama N; Saika Y; Yamada Y: **Effect of vitamin E on lipid metabolism and atherosclerosis in ESRD patients.** In: Kidney international. Suppl. (1999). Nr. 71, S. 126-129.

67. Nakamura T; Kawagoe Y; Matsuda T; Takahashi Y; Sekizuka K; Ebihara I; Koide H: **Effects of LDL apheresis and vitamin E-modified membrane on carotid atherosclerosis in hemodialyzed patients with arteriosclerosis obliterans.** In: Kidney & blood pressure research 26 (2003). Nr. 3, S. 185-191.

68. Pertosa G; Grandaliano G; Soccio M; Martino C; Gesualdo L; Schena FP: **Vitamin E-modified filters modulate Jun N-terminal kinase activation in peripheral blood mononuclear cells.** In: Kidney international 62 (2002). Nr. 2, S. 602-610.

70. Tarng DC; Huang TP; Liu TY; Chen HW; Sung YJ; Wei YH: **Effect of vitamin E-bonded membrane on the 8-hydroxy 2'-deoxyguanosine level in leukocyte DNA of hemodialysis patients.** In: Kidney international 58 (2000). Nr. 2, S. 790-799.

71. Tarng DC; Liu TY; Huang TP: **Protective effect of vitamin C on 8-hydroxy-2'-deoxyguanosine level in peripheral blood lymphocytes of chronic hemodialysis patients.** In: Kidney international 66 (2004). Nr. 2, S. 820-831.

73. Usberti M; Gerardi G; Bufano G; Tira P; Micheli A; Albertini A; Floridi A; Di, L; Galli F: **Effects of erythropoietin and vitamin E-modified membrane on plasma oxidative stress markers and anemia of hemodialyzed patients.** In: American journal of kidney diseases: the official journal of the National Kidney Foundation 40 (2002). Nr. 3, S. 590-599.

74. Williams MJA; Sutherland WHF; McCormick MP; De, J; McDonald JR; Walker RJ: **Vitamin C improves endothelial dysfunction in renal allograft recipients.** In: Nephrology Dialysis Transplantation 16 (2001). Nr. 6, S. 1251-1255.

6.3 Ausgeschlossene Literatur

6.3.1 Thematisch relevante Literaturstelle ohne eigene Ergebnisse oder Hintergrundliteratur

91. Bostom AG; Kronenberg F; Gohh RY; Schwenger V; Kuen E; König P; Kraatz G; Lhotta K; Mann JFE; Müller GA; Neyer U; Riegel W; Rieger P; Ritz E; Selhub J: Chronic renal transplantation: A model for the hyperhomocysteinemia of renal insufficiency. In: Atherosclerosis 156 (2001). Nr. 1, S. 227-230.

116. Iannone A; Bergamini S; Bellei E; Rota C; Tomasi A: Chronic inflammation in end stage renal disease: Markers of oxidative stress and redox modification. In: Free radical biology & medicine 36 (2004). Suppl. 1, S. 39

117. Inoguchi T; Tsubouchi H; Etoh T; Kakimoto M; Sonta T; Utsumi H; Sumimoto H; Yu HY; Sonoda N; Inuo M; Sato N; Sekiguchi N; Kobayashi K; Nawata H: A possible target of antioxidative therapy for diabetic vascular complications-vascular NAD(P)H oxidase. In: Current Medicinal Chemistry 10 (2003). Nr. 17, S. 1759-1764.
118. Inoguchi T; Sonta T; Tsubouchi H; Etoh T; Kakimoto M; Sonoda N; Sato N; Sekiguchi N; Kobayashi K; Sumimoto H; Utsumi H; Nawata H: Protein kinase C-dependent increase in reactive oxygen species (ROS) production in vascular tissues of diabetes: Role of vascular NAD(P)H oxidase. In: Journal of the American Society of Nephrology 14 (2003). Suppl., S. 227-232.

126. Kasiske BL; Cohen JJ; Harrington JT; Madias NE; Rabb H; Rosenberg M; Herzog CA; Aaronson M; Adrogué HE; Anjum S; Berkseth R: Ischemic heart disease after renal transplantation. In: Kidney international 61 (2002). Nr. 1, S. 356-369.

135. Lim SL; Lee EJ; Myint CC; Ong KT; Tay ME; Yusuf N; Ong CN: Oral intake and serum levels of ascorbic acid in continuous ambulatory peritoneal dialysis patients. In: Advances in peritoneal dialysis 17 (2001). S. 215-218.

153. Nguyen-Khoa T; Massy ZA; Witko-Sarsat V; Thévenin M; Touam M; Lambrey G; Lacour B; Drüke TB; Scamps-Latsch, B: Critical evaluation of plasma and LDL oxidant-trapping potential in hemodialysis patients. In: Kidney international 56 (1999). Nr. 2, S. 747-753.

155. Ongajooth L; Ongajyooth S; Likidlilid A; Chantachum Y; Shayakul C; Nilwarangkur S: Role of lipid peroxidation, trace elements and anti-oxidant enzymes in chronic renal disease patients. In: Journal of the Medical Association of Thailand = Chotmaihet thangphaet 79 (1996). Nr. 12, S. 791-800.

157. Pandav CS; Anand K; Gupta S; Murthy GV: Cost of vitamin A and iron supplementation to "at risk" population. In: Unbekannt (1899).

162. Rao PVLN; Dakshinamurty KV; Saibaba KSS; Raghavan MSS; Vijayabhaskar M; Sreerkrishna V; Ambekar JG; Jayaseelan L: **Oxidative stress in haemodialysis - intradialytic changes.** In: Redox Report 6 (2001). Nr. N5, S. 303-309.

168. Schiller HJ; Reilly PM; Bulkley GB: **Antioxidant therapy.** In: Critical Care Medicine 21 (1993). Nr. 2, S. S92-S102.

172. Siems W; Quast S; Carluccio F; Wiswedel I; Hirsch D; Augustin W; Kraemer K; Hampl H; Sommerburg O: **Oxidative stress in cardio renal anemia syndrome: Correlations and therapeutic possibilities.** In: Clinical nephrology 60 (2003). Suppl.1, S. 22-30.

177. Taccone-Gallucci M; Lubrano R; Meloni C; Morosetti M; Adolfo CM; Casciani CU: Malonyldialdehyde content of cell membranes is the most important marker of oxidative stress in haemodialysis patients. In: Nephrology, dialysis, transplantation: official publication of the European Dialysis and Transplant Association - European Renal Association 13 (1998). Nr. 10, S. 2711-2712.

188. Wratten ML; Galaris D; Tetta C; Sevanian A: Evolution of oxidative stress and inflammation during hemodialysis and their contribution to cardiovascular disease. In: Antioxidants and Redox Signaling 4 (2002). Nr. 6, S. 935-944.

Primärstudie, Zielgröße erfüllt Einschlusskriterien nicht

Primärstudie, Studienpopulation erfüllt Einschlusskriterien nicht

199. Davey PJ; Schulz M; Gliksman M; Dobson M; Aristides M; Stephens NG: Cost-effectiveness of vitamin E therapy in the treatment of patients with angiographically proven coronary narrowing (CHAOS trial) (Structured abstract). In: Unbekannt (1899).

Primärstudie, Intervention erfüllt Einschlusskriterien nicht

204. Campise M; Bamonti F; Novembrino C; Ippolito S; Tarantino A; Cornelli U; Lonati S; Cesana BM; Ponticelli C: Oxidative stress in kidney transplant patients. In: Transplantation 76 (2003). Nr. 10, S. 1474-1478.

206. Clermont G; Lecour S; Lahet J; Siohan P; Vergely C; Chevet D; rifle G; Rochette L: Alteration in plasma antioxidant capacities in chronic renal failure and hemodialysis patients: a possible explanation for the increased cardiovascular risk in these patients. In: Cardiovascular research 47 (2000). Nr. 3, S. 618-623.

207. Dakshinamurty KV; Rao PV; Sreibaba KS; Sheela RB; Sreekrishna V; Venakataramana G; Shyam C; Jayaseelan L: Oxidative stress in hemodialysis--postdialytic changes. In: Clinical laboratory 49 (2003). Nr. 5-6, S. 255-261.

209. Drai J; Bannier E; Chazot C; Hurot JM; Goedert G; Jean G; Charra B; Laurent G; Baltassat P; Revol A: Oxidants and antioxidants in long-term haemodialysis patients. In: Il Farmaco 56 (2001). Nr. 5-7, S. 463-465.

214. Gerardi G; Usberti M; Martini G; Albertini A; Sugherini L; Pompella A; Di LD: Plasma total antioxidant capacity in hemodialyzed patients and its relationships to other biomarkers of oxidative stress and lipid peroxidation. In: Clinical chemistry and laboratory medicine: 40 (2002). Nr. 2, S. 104-110.

218. Maachi K; Berthoux P; Burgard G; Alamartine E; Berthoux F: Results of a 1-year randomized controlled trial with omega-3 fatty acid fish oil in renal transplantation under triple immunosuppressive therapy. In: Transplantation proceedings 27 (1995). Nr. 1, S. 846-849.

220. Marcucci R; Zanazzi M; Bertoni E; Rosati A; Fedi S; Lenti M; Prisco D; Castellani S; Abbate R; Salvadori M: Vitamin supplementation reduces the progression of atherosclerosis in hyperhomocysteinemic renal-transplant recipients. In: Transplantation 75 (2003). Nr. 9, S. 1551-1555.
221. Ohkawa S; Yoneyama T; Shimo K; Takita T; Maruyama Y; Kumagai H: **Pro-oxidative effect of alpha-tocopherol in the oxidation of LDL isolated from co-antioxidant-depleted non-diabetic hemodialysis patients.** In: Atherosclerosis 176 (2004). Nr. 2, S. 411-418.

222. Rajbala A; Sane AS; Shah PR; Mishra VV; Patel SM; Shah SA; Shah VR; Trivedi HL: **Effect of renal transplantation (surgical stress) on serum levels of oxidants and reducing system.** In: Panminerva Medica 41 (1999). Nr. 1, S. 31-34.

223. Srinivasa R; Dakshinamurty KV; Saibaba KS; Raghavan MS; Vijayabhaskar M; Sreekrishna V; Ambekar JG; Jayaseelan L: **Oxidative stress in haemodialysis--intradialytic changes.** In: Redox report: communications in free radical research 6 (2001). Nr. 5, S. 303-309.

225. Tarng DC; Wen C; Huang TP; Chen CL; Liu TY; Wei YH: **Increased oxidative damage to peripheral blood leukocyte DNA in chronic peritoneal dialysis patients.** In: Journal of the American Society of Nephrology: JASN 13 (2002). Nr. 5, S. 1321-1330.

226. Usberti M; Gerardi G; Gazzotti RM; Benedini S; Archetti S; Sugherini L; Valentini M; Tira P; Bufano G; Albertini A; Di LD: **Oxidative stress and cardiovascular disease in dialyzed patients.** In: Nephron 91 (2002). Nr. 1, S. 25-33.

Primärstudie, Studiendesign erfüllt Einschlusskriterien nicht

227. Aguilera A; Bajo MA; del Peso G; Diez JJ; Codoceo R; Rebollo F; Mariano M; Selgas R: **True deficiency of antioxidant vitamins E and A in dialysis patients. Relationship with clinical patterns of atherosclerosis.** In: Advances in peritoneal dialysis 18 (2002). Nr. S. 206-211.

228. Badiou S; Cristol JP; Morena M; Bosc JY; Carbonneau MA; Dupuy AM; Descomps B; Canaud B: **Vitamin E supplementation increases LDL resistance to ex vivo oxidation in hemodialysis patients.** In: International journal for vitamin and nutrition research. Internationale Zeitschrift für Vitamin- und Ernährungsforschung. Journal international de vitaminologie et de nutrition 73 (2003). Nr. 4, S. 290-296.

231. Buoncristiani U; Galli F; Rovidati S; Albertini MC; Campus G; Canestrari F: **Oxidative damage during hemodialysis using a vitamin-E-modified dialysis membrane: a preliminary characterization.** In: Nephron 77 (1997). Nr. 1, S. 57-61.
232. Chiarelli F; Santilli F; Sabatino G; Blasetti A; Tumini S; Cipollone F; Mezzetti A; Verrotti A: Effects of vitamin E supplementation on intracellular antioxidant enzyme production in adolescents with type 1 diabetes and early microangiopathy. In: Pediatric research 56 (2004). Nr. 5, S. 720-725.

233. Cross JM; Donald AE; Nuttall SL; Deanfield JE; Woolfson RG; Macallister RJ: Vitamin C improves resistance but not conduit artery endothelial function in patients with chronic renal failure. In: Kidney international 63 (2003). Nr. 4, S. 1433-1442.

235. Ghiadoni L; Cupisti A; Huang Y; Mattei P; Cardinal H; Favilla S; Rindi P; Barsotti G; Taddei S; Salvetti A: Endothelial dysfunction and oxidative stress in chronic renal failure. In: Journal of nephrology 17 (2004). Nr. 4, S. 512-519.

239. Kan E; Undeger U; Bali M; Basaran N: Assessment of DNA strand breakage by the alkaline COMET assay in dialysis patients and the role of Vitamin E supplementation. In: Mutation research 520 (2002). Nr. 1-2, S. 151-159.

240. Loong CC; Chang YH; Wu TH; King KL; Yang WC; Wu CW; Lui WY: Antioxidant supplementation may improve renal transplant function: A preliminary report. In: Transplantation proceedings 36 (2004). Nr. 8, S. 2438-2439.

244. Mydlík M; Derzsiová K; Rácz O; Sipulová A; Lovásová E; Molcányiová A; Petrovicová J: *Vitamin E-coated dialyzer and antioxidant defense parameters: three-month study.* In: Seminars in nephrology 24 (2004). Nr. 5, S. 525-531.

245. Panzetta O; Cominacini L; Garbin U; Fratta Pasini A; Gammaro L; Bianco F; Davoli A; Campagnola M; de Santis A; Pastorino AM: *Increased susceptibility of LDL to in vitro oxidation in patients on maintenance hemodialysis: effects of fish oil and vitamin E administration.* In: Clinical nephrology 44 (1995). Nr. 5, S. 303-309.

246. Saran R; Novak JE; Desai A; Abdulhayoglu E; Warren JS; Bustami R; Handelman GJ; Barbato D; Weizel W; D'alecy LG; Rajagopalan S: *Impact of vitamin E on plasma asymmetric dimethylarginine (ADMA) in chronic kidney disease (CKD): A pilot study.* In: Nephrology Dialysis Transplantation 18 (2003). Nr. 11, S. 2415-2420.

248. Smith KS; Lee CL; Ridlington JW; Leonard SW; Devaraj S; Traber MG: *Vitamin E supplementation increases circulating vitamin E metabolites tenfold in end-stage renal disease patients.* In: Lipids 38 (2003). Nr. 8, S. 813-819.

249. Sommerburg O; Sostmann, K; Grune, T; Ehrich, JH: *Oxidative stress in hemodialysis patients treated with a dialysis membrane which has alpha-tocopherol bonded to its surface.* In: BioFactors 10 (1999). Nr. 2-3, S. 121-124.

250. Varghese Z; Fernando RL; Turakhia G; Psimenou E; Fernando ON; Sweny P; Powis SH; Moorhead JF: *Calcineurin inhibitors enhance low-density lipoprotein oxidation in transplant patients.* In: Kidney International, Supplement 56 (1999). Nr. 71, S. 137-140.

251. Vela C; Cristol JP; Maggi MF; Ribstein J; Mimran A; Descomps B; Mourad G: *Oxidative stress in renal transplant recipients with chronic rejection: rationale for antioxidant supplementation.* In: Transplantation proceedings 31 (1999). Nr. 1-2, S. 1310-1311.

Tier- oder Phantomstudie

Nur als Abstract publiziert

257. Caceres MS; Ocqueteau M; Panes O; Jara A; Quiroga T; Pereira J; Mezzano D: Enhanced monocyte tissue factor expression in patients with chronic renal failure is modulated by alpha-tocopherol. In: Haemostasis 30 (2000). Nr. 1-2, S. 75.

258. Cirina P; Amore A; Chiesa M; Conti G; Peruzzi L; Coppo R: Control of glucose-induced oxidative stress in mesothelial cells by anti-oxidant supplementation of peritoneal dialysis fluids (PDF). In: Nephrology Dialysis Transplantation 16 (2001). Nr. 6, S. A193.

259. Clermont G; Lecour S; Lahet JJ; Siohan P; Vergely C; Chevet D; Rifle G; Rochette L: Oxidative stress is increased in chronic renal failure patients and exacerbated by hemodialysis. In: Free Radical Biology and Medicine 29 (2000). Suppl. 1, S. 107.

260. Domenici F; Vannucchi MT; Meirelles M; Russo H; Jordao A; Louzada R; Vannucchi H: Study of oxidative DNA damage in chronic renal patients on peritoneal dialysis and hemodialysis supplemented with vitamin E. In: Nephrology Dialysis Transplantation 17 (2002). Abstracts Suppl. 1, S. 278-279.

262. Pincemail J; Bovy C; Chapelle JP; Gielen J; Defraigne JO; Rorive G: Markers of oxidative stress linked to increased risk of cardiovascular diseases in chronic hemodialysis patients. In: Free Radical Biology and Medicine 31 (2001). Nr. 10, S. 113.

Doppelt

268. Panzetta O; Cominacini L; Garbin U; Fratta P; Gammaro L; Bianco F; Davoli A; Campagnola M; De Santis A; Pastorino AM; Lo Cascio V: Increased susceptibility of LDL to in vitro oxidation in patients on maintenance hemodialysis: Effects of fish oil and vitamin E administration. In: Clinical nephrology 44 (1995). Nr. 5, S. 303-309.

Nicht beschaffbar

Seit Einrichtung der Deutschen Agentur für HTA des DIMDI (DAHTA@DIMDI) im Jahr 2000 gehören die Entwicklung und Bereitstellung von Informationssystemen, speziellen Datenbanken und HTA-Berichten zu den Aufgaben des DIMDI.

Im Rahmen der Forschungsförderung beauftragt das DIMDI qualifizierte Wissenschaftler mit der Erstellung von HTA-Berichten, die Aussagen machen zu Nutzen, Risiko, Kosten und Auswirkungen medizinischer Verfahren und Technologien mit Bezug zur gesundheitlichen Versorgung der Bevölkerung. Dabei fallen unter den Begriff Technologie sowohl Medikamente als auch Instrumente, Geräte, Prozeduren, Verfahren sowie Organisationsstrukturen. Vorrang haben dabei Themen, für die gesundheitspolitischer Entscheidungsbedarf besteht.